International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Pascal Nasahl

Publications

Year
Venue
Title
2024
TCHES
Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against Faults
Fault injection attacks are a serious threat to system security, enabling attackers to bypass protection mechanisms or access sensitive information. To evaluate the robustness of CPU-based systems against these attacks, it is essential to analyze the consequences of the fault propagation resulting from the complex interplay between the software and the processor. However, current formal methodologies combining hardware and software face scalability issues due to the monolithic approach used. To address this challenge, this work formalizes the k-fault-resistant partitioning notion to solve the fault propagation problem when assessing redundancy-based hardware countermeasures in a first step. Proven security guarantees can then reduce the remaining hardware attack surface when introducing the software in a second step. First, we validate our approach against previous work by reproducing known results on cryptographic circuits. In particular, we outperform state-of-the-art tools for evaluating AES under a three-fault-injection attack. Then, we apply our methodology to the OpenTitan secure element and formally prove the security of its CPU’s hardware countermeasure to single bit-flip injections. Besides that, we demonstrate that previously intractable problems, such as analyzing the robustness of OpenTitan running a secure boot process, can now be solved by a co-verification methodology that leverages a k-fault-resistant partitioning. We also report a potential exploitation of the register file vulnerability in two other software use cases. Finally, we provide a security fix for the register file, prove its robustness, and integrate it into the OpenTitan project.
2022
TCHES
SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element
Fault attacks are active, physical attacks that an adversary can leverage to alter the control-flow of embedded devices to gain access to sensitive information or bypass protection mechanisms. Due to the severity of these attacks, manufacturers deploy hardware-based fault defenses into security-critical systems, such as secure elements. The development of these countermeasures is a challenging task due to the complex interplay of circuit components and because contemporary design automation tools tend to optimize inserted structures away, thereby defeating their purpose. Hence, it is critical that such countermeasures are rigorously verified post-synthesis. Since classical functional verification techniques fall short of assessing the effectiveness of countermeasures (due to the circuit being analyzed when no faults are present), developers have to resort to methods capable of injecting faults in a simulation testbench or into a physical chip sample. However, developing test sequences to inject faults in simulation is an error-prone task and performing fault attacks on a chip requires specialized equipment and is incredibly time-consuming. Moreover, identifying the fault-vulnerable circuit is hard in both approaches, and fixing potential design flaws post-silicon is usually infeasible since that would require another tape-out. To that end, this paper introduces SYNFI, a formal pre-silicon fault verification framework that operates on synthesized netlists. SYNFI can be used to analyze the general effect of faults on the input-output relationship in a circuit and its fault countermeasures, and thus enables hardware designers to assess and verify the effectiveness of embedded countermeasures in a systematic and semi-automatic way. The framework automatically extracts sensitive parts of the circuit, induces faults into the extracted subcircuit, and analyzes the faults’ effects using formal methods. To demonstrate that SYNFI is capable of handling unmodified, industry-grade netlists synthesized with commercial and open tools, we analyze OpenTitan, the first opensource secure element. In our analysis, we identified critical security weaknesses in the unprotected AES block, developed targeted countermeasures, reassessed their security, and contributed these countermeasures back to the OpenTitan project. For other fault-hardened IP, such as the life cycle controller, we used SYNFI to confirm that existing countermeasures provide adequate protection.