International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Adriaan Peetermans

Publications

Year
Venue
Title
2024
TCHES
TRNG Entropy Model in the Presence of Flicker FM Noise
Adriaan Peetermans Ingrid Verbauwhede
Flicker Frequency Modulated (FM) noise, which influences free-running Ring Oscillators (ROs), can make a substantial contribution to the entropy generated by RO-based True Random Number Generators (TRNGs). While current TRNG stochastic models predominantly concentrate on white FM noise, the addition of flicker FM noise could remarkably enrich the analysis of the TRNG entropy production rate. This paper introduces an entropy model for TRNGs, employing Gaussian processes, to estimate entropy generation from both white FM and flicker FM noise. We analytically derive the flicker FM noise Auto-Correlation Function (ACF), enabling assessment of entropy contributions conditioned on partial knowledge of the TRNG’s internal state. Utilizing the developed model with commonly reported noise magnitudes found in literature, it is determined that flicker FM noise holds the potential to substantially enhance the TRNG’s entropy rate. However, due to considerable variation in reported magnitudes across limited available research on flicker FM noise, it cannot yet be universally accepted as a dependable source of TRNG entropy.
2022
TCHES
An energy and area efficient, all digital entropy source compatible with modern standards based on jitter pipelining
Adriaan Peetermans Ingrid Verbauwhede
This paper proposes an energy and area efficient entropy source, suitable for true random number generation, accompanied with a stochastic model in a 28nm CMOS technology. The design uses a jitter pipelining architecture together with an increased timing resolution to achieve a maximal throughput of 298 Mbit/s and a best energy efficiency of 1.46 pJ/bit at a supply of 0.8V. The generated random bits pass the NIST SP 800-90B IID tests with a min entropy rate of 0.933 bit/bit, which is more than required by the AIS-31 standard. The all digital design allows for effortless transfer to other technology nodes, taking advantage of all benefits related to further technology scaling.