CryptoDB
Hamidreza Khoshakhlagh
Publications
Year
Venue
Title
2024
PKC
Witness Encryption for Succinct Functional Commitments and Applications
Abstract
Witness encryption (WE), introduced by Garg, Gentry, Sahai, and Waters (STOC 2013) allows one to encrypt a message to a statement x for some NP language L, such that any user holding a witness for x ∈ L can decrypt the ciphertext. The extreme power of this primitive comes at the cost of its elusiveness: a practical construction from established cryptographic assumptions is currently out of reach.
In this work, we investigate a new notion of encryption that has a flavor of WE and that we can build only based on bilinear pairings, for interesting classes of computation. We do this by connecting witness encryption to functional commitments (FC). FCs are an advanced notion of commitments that allows fine-grained openings, that is non-interactive proofs to show that a commitment cm opens to v such that y = G(v), with the crucial feature that both commitments and openings are succinct.
Our new WE notion, witness encryption for (succinct) functional commitment (WE-FC), allows one to encrypt a message with respect to a triple (cm, G, y), and decryption is unlocked using an FC opening that cm opens to v such that y = G(v). This mechanism is similar to the notion of witness encryption for NIZK of commitments [Benhamouda and Lin, TCC’20], with the crucial difference that ours supports commitments and decryption time whose size and complexity do not depend on the length of the committed data v.
Our main contributions are therefore the formal definition of WE-FC, a generic methodology to compile an FC in bilinear groups into an associated WE-FC scheme (semantically secure in the generic group model), and a new FC construction for NC1 circuits that yields a WE-FC for the same class of functions. Similarly to [Benhamouda and Lin, TCC’20], we show how to apply WE-FC to construct multiparty reusable non-interactive secure computation (mrNISC) protocols. Crucially, the efficiency profile of WE-FC yields mrNISC protocols whose offline stage has shorter communication (only a succinct commitment from each party). As an additional contribution, we discuss further applications of WE-FC and show how to extend this primitive to better suit these settings.
2022
ASIACRYPT
Encryption to the Future A Paradigm for Sending Secret Messages to Future (Anonymous) Committees
📺
Abstract
A number of recent works have constructed cryptographic protocols with flavors of adaptive security by having a randomly-chosen anonymous committee run at each round. Since most of these protocols are stateful, transferring secret states from past committees to future, but still unknown, committees is a crucial challenge. Previous works have tackled this problem with approaches tailor-made for their specific setting, which mostly rely on using a blockchain to orchestrate auxiliary committees that aid in the state hand-over process. In this work, we look at this challenge as an important problem on its own and initiate the study of Encryption to the Future (EtF) as a cryptographic primitive. First, we define a notion of an EtF scheme where time is determined with respect to an underlying blockchain and a lottery selects parties to receive a secret message at some point in the future. While this notion seems overly restrictive, we establish two important facts: 1. if used to encrypt towards parties selected in the “far future”, EtF implies witness encryption for NP over a blockchain; 2. if used to encrypt only towards parties selected in the “near future”, EtF is not only sufficient for transferring state among committees as required by previous works, but also captures previous tailor-made solutions. To corroborate these results, we provide a novel construction of EtF based on witness encryption over commitments (cWE), which we instantiate from a number of standard assumptions via a construction based on generic cryptographic primitives. Finally, we show how to use “near future” EtF to obtain “far future” EtF with a protocol based on an auxiliary committee whose communication complexity is independent of the length of plaintext messages being sent to the future.
Coauthors
- Matteo Campanelli (2)
- Bernardo David (1)
- Dario Fiore (1)
- Hamidreza Khoshakhlagh (2)
- Anders Konring (1)
- Jesper Buus Nielsen (1)