CryptoDB
Giacomo Pope
Publications
Year
Venue
Title
2024
ASIACRYPT
SQIsign2D-West: The Fast, the Small, and the Safer
Abstract
We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations.
SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but considerably slower verification owing to the complexity of the four-dimensional representation. Its authors commented on the apparent difficulty of getting any improvement over SQIsign by using two-dimensional representations.
In this work, we introduce new algorithmic tools that make two-dimensional representations a viable alternative. These lead to a signature scheme with sizes comparable to SQIsignHD, slightly slower signing than SQIsignHD but still much faster than SQIsign, and the fastest verification of any known variant of SQIsign. We achieve this without compromising on the security proof: the assumptions behind SQIsign2D-West are similar to those of the eight-dimensional variant of SQIsignHD. Additionally, like SQIsignHD, SQIsign2D-West favourably scales to high levels of security.
Concretely, for NIST level I we achieve signing times of 80ms and verifying times of 4.5ms, using optimised arithmetic based on intrinsics available to the Ice Lake architecture. For NIST level V, we achieve 470ms for signing and 31ms for verifying.
2024
ASIACRYPT
An Algorithmic Approach to $(2,2)$-isogenies in the Theta Model and Applications to Isogeny-based Cryptography
Abstract
In this paper, we describe an algorithm to compute chains of $(2,2)$-isogenies between products of elliptic curves in the theta model. The description of the algorithm is split into various subroutines to allow for a precise field operation counting.
We present a constant time implementation of our algorithm in Rust and an alternative implementation in SageMath. Our work in SageMath runs ten times faster than a comparable implementation of an isogeny chain using the Richelot correspondence. The Rust implementation runs up to forty times faster than the equivalent isogeny in SageMath and has been designed to be portable for future research in higher-dimensional isogeny-based cryptography.
2023
EUROCRYPT
A Direct Key Recovery Attack on SIDH
★
Abstract
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [8]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [8]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any isogeny-based cryptosystem that publishes the images of points under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].
2023
ASIACRYPT
FESTA: Fast Encryption from Supersingular Torsion Attacks
Abstract
We introduce FESTA, an efficient isogeny-based public-key encryption (PKE) protocol based on a constructive application of the SIDH attacks.
At its core, FESTA is based on a novel trapdoor function, which uses an improved version of the techniques proposed in the SIDH attacks to develop a trapdoor mechanism. Using standard transformations, we construct an efficient PKE that is IND-CCA secure in the QROM. Additionally, using a different transformation, we obtain the first isogeny-based PKE that is IND-CCA secure in the standard model.
Lastly, we propose a method to efficiently find parameters for FESTA, and we develop a proof-of-concept implementation of the protocol. We expect FESTA to offer practical performance that is competitive with existing isogeny-based constructions.
Coauthors
- Andrea Basso (2)
- Pierrick Dartois (2)
- Luca De Feo (1)
- Antonin Leroux (1)
- Luciano Maino (4)
- Chloe Martindale (1)
- Lorenz Panny (1)
- Giacomo Pope (4)
- Damien Robert (2)
- Benjamin Wesolowski (2)