CryptoDB
Renas Bacho
Publications
Year
Venue
Title
2024
EUROCRYPT
Twinkle: Threshold Signatures from DDH with Full Adaptive Security
Abstract
Sparkle is the first threshold signature scheme in the pairing-free discrete logarithm setting (Crites, Komlo, Maller, Crypto 2023) to be proven secure under adaptive corruptions.
However, without using the algebraic group model, Sparkle's proof imposes an undesirable restriction on the adversary.
Namely, for a signing threshold t<n, the adversary is restricted to corrupt at most t/2 parties.
In addition, Sparkle's proof relies on a strong one-more assumption.
In this work, we propose Twinkle, a new threshold signature scheme in the pairing-free setting which overcomes these limitations.
Twinkle is the first pairing-free scheme to have a security proof under up to t adaptive corruptions without relying on the algebraic group model.
It is also the first such scheme with a security proof under adaptive corruptions from a well-studied non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH)
assumption.
We achieve our result in two steps.
First, we design a generic scheme based on a linear function that satisfies several abstract properties and prove its adaptive security under a suitable one-more assumption related to this function.
In the context of this proof, we also identify a gap in the security proof of Sparkle and develop new techniques to overcome this issue.
Second, we give a suitable instantiation of the function for which the corresponding one-more assumption follows from DDH.
2024
ASIACRYPT
Tightly Secure Non-Interactive BLS Multi-Signatures
Abstract
Due to their simplicity, compactness, and algebraic structure, BLS signatures are among the most widely used signatures in practice.
For example, used as multi-signatures, they are integral in Ethereum's proof-of-stake consensus.
From the perspective of concrete security, however, BLS (multi-)signatures suffer from a security loss linear in the number of signing queries. It is well-known that this loss can not be avoided using current proof techniques.
In this paper, we introduce a new variant of BLS multi-signatures that achieves tight security while remaining fully compatible with regular BLS. In particular, our signatures can be seamlessly combined with regular BLS signatures, resulting in regular BLS signatures.
Moreover, it can easily be implemented using existing BLS implementations in a black-box way.
Our scheme is also one of the most efficient non-interactive multi-signatures, and in particular more efficient than previous tightly secure schemes.
We demonstrate the practical applicability of our scheme by showing how proof-of-stake protocols that currently use BLS can adopt our variant for fully compatible opt-in tight security.
2024
ASIACRYPT
HARTS: High-Threshold, Adaptively Secure, and Robust Threshold Schnorr Signatures
Abstract
Threshold variants of the Schnorr signature scheme have recently been at the center of attention due to their applications to Bitcoin, Ethereum, and other cryptocurrencies.
However, existing constructions for threshold Schnorr signatures among a set of n parties with corruption threshold t_c suffer from at least one of the following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) cubic or higher communication cost to generate a single signature, (iii) strong synchrony assumptions on the network, or (iv) t_c+1 are sufficient to generate a signature, i.e., the corruption threshold of the scheme equals its reconstruction threshold. Especially (iv) turns out to be a severe limitation for many asynchronous real-world applications where t_c < n/3 is necessary to maintain liveness, but a higher signing threshold of n-t_c is needed. A recent scheme, ROAST, proposed by Ruffing et al. (ACM CCS `22) addresses (iii) and (iv), but still falls short of obtaining subcubic complexity and adaptive security.
In this work, we present HARTS, the first threshold Schnorr signature scheme to incorporate all these desiderata. More concretely:
- HARTS is adaptively secure and remains fully secure and operational even under asynchronous network conditions in the presence of up to t_c < n/3 malicious parties. This is optimal.
- HARTS outputs a Schnorr signature of size lambda with a near-optimal amortized communication cost of O(lambda n^2 log n) bits and a single online round per signature.
- HARTS is a high-threshold scheme: no fewer than t_r+1 signature shares can be combined to yield a full signature, where any t_r in [t_c,n-t_c) is supported. This especially covers the case t_r >= 2n/3 > 2t_c. This is optimal.
We prove our result in a modular fashion in the algebraic group model. At the core of our construction, we design a new simple and adaptively secure high-threshold AVSS scheme which may be of independent interest.
2023
CRYPTO
Network-Agnostic Security Comes (Almost) for Free in DKG and MPC
Abstract
Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to t_s<n/2 corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate t_a<n/3 corruptions, even when the network is well-behaved.
In this work, we ask whether one can design a protocol that achieves security guarantees in either scenario. We show a complete characterization of _network-agnostic_ DKG protocols, showing that the tight bound is t_a + 2t_s < n. As a second contribution, we provide an optimized version of the network-agnostic MPC protocol by Blum, Liu-Zhang and Loss [CRYPTO'20] which improves over the communication complexity of their protocol by a linear factor. Moreover, using our DKG protocol, we can instantiate our MPC protocol in the _plain PKI model_, i.e., without the need to assume an expensive trusted setup.
Our protocols incur comparable communication complexity as state-of-the-art DKG and MPC protocols with optimal resilience in their respective purely synchronous and asynchronous settings, thereby showing that network-agnostic security comes (almost) _for free_.
Coauthors
- Renas Bacho (4)
- Daniel Collins (1)
- Chen-Da Liu-Zhang (1)
- Julian Loss (3)
- Gilad Stern (1)
- Stefano Tessaro (1)
- Benedikt Wagner (3)
- Chenzhi Zhu (1)