CryptoDB
Johannes Ottenhues
Publications
Year
Venue
Title
2023
ASIACRYPT
Generalized Fuzzy Password-Authenticated Key Exchange from Error Correcting Codes
Abstract
Fuzzy Password-Authenticated Key Exchange (fuzzy PAKE)
allows cryptographic keys to be generated from authentication data that
is both fuzzy and of low entropy. The strong protection against offline attacks offered by fuzzy PAKE opens an interesting avenue towards secure
biometric authentication, typo-tolerant password authentication, and automated IoT device pairing. Previous constructions of fuzzy PAKE are
either based on Error Correcting Codes (ECC) or generic multi-party
computation techniques such as Garbled Circuits. While ECC-based constructions are significantly more efficient, they rely on multiple special
properties of error correcting codes such as maximum distance separability and smoothness.
We contribute to the line of research on fuzzy PAKE in two ways. First,
we identify a subtle but devastating gap in the security analysis of the
currently most efficient fuzzy PAKE construction (Dupont et al., Eurocrypt 2018), allowing a man-in-the-middle attacker to test individual
password characters. Second, we provide a new fuzzy PAKE scheme
based on ECC and PAKE that provides a built-in protection against
individual password character guesses and requires fewer, more standard properties of the underlying ECC. Additionally, our construction
offers better error correction capabilities than previous ECC-based fuzzy
PAKEs.
Coauthors
- Jonathan Bootle (1)
- Sebastian Faller (1)
- Julia Hesse (1)
- Kristina Hostáková (1)
- Johannes Ottenhues (1)