International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Benqiang Wei

Publications

Year
Venue
Title
2024
EUROCRYPT
Circuit Bootstrapping: Faster and Smaller
We present a novel circuit bootstrapping algorithm that outperforms the state-of-the-art TFHE method with 9.9× speedup and 15.6× key size reduction. These improvements can be attributed to two technical contributions. Firstly, we redesigned the circuit bootstrapping workflow to operate exclusively under the ring ciphertext type, which eliminates the need of conversion between LWE and RLWE ciphertexts. Secondly, we improve the LMKC+ blind rotation algorithm by reducing the number of automorphisms, then propose the first automorphism type multi-value functional bootstrapping. These automorphism-based techniques lead to further key size optimization, and are of independent interest besides circuit bootstrapping. Based our new circuit bootstrapping we can evaluate AES-128 in 26.2s (single thread), achieving 10.3× speedup compared with the state-of-the-art TFHE-based approach.
2024
TCHES
Thunderbird: Efficient Homomorphic Evaluation of Symmetric Ciphers in 3GPP by combining two modes of TFHE
Hybrid homomorphic encryption (a.k.a., transciphering) can alleviate the ciphertext size expansion inherent to fully homomorphic encryption by integrating a specific symmetric encryption scheme, which requires selected symmetric encryption scheme that can be efficiently evaluated homomorphically. While there has been a recent surge in the development of FHE-friendly ciphers, concerns have arisen regarding their security. A significant challenge for the transciphering community remains the efficient evaluation of symmetric encryption algorithms that have undergone extensive study and standardization.In this paper, we present an evaluation framework, dubbed Thunderbird, which for the first time presents efficient homomorphic implementations of stream ciphers SNOW 3G and ZUC that are standardized in the 3G Partnership Project (3GPP). Specifically, Thunderbird combines gate bootstrapping mode and leveled evaluation mode of TFHE to cater to various function types within symmetric encryption algorithms. In the gate bootstrapping mode, we propose a variant of the homomorphic full adder that consumes only a single blind rotation, which may be of independent interest. In the leveled evaluation mode, we employ the CMux gate combining with hybrid packing technique to efficiently achieve lookup tables, significantly reducing the need for gate bootstrapping, and adapt the current optimal circuit bootstrapping to expedite the Thunderbird framework. We have implemented the Thunderbird framework in the TFHEpp public library. Experimental results demonstrate that SNOW 3G and ZUC can homomorphically generate a keyword in only 7 seconds and 9.5 seconds, which are 52x and 32x faster than the trivial gate bootstrapping mode, respectively. For the homomorphic evaluation of the AES-128 algorithm using Thunderbird, we achieve a speedup of 1.9x in terms of latency and use less evaluation key compared to the state-of-the-art work.
2023
TCHES
Faster Bootstrapping via Modulus Raising and Composite NTT
FHEW-like schemes utilize exact gadget decomposition to reduce error growth and ensure that the bootstrapping incurs only polynomial error growth. However, the exact gadget decomposition method requires higher computation complexity and larger memory storage. In this paper, we improve the efficiency of the FHEWlike schemes by utilizing the composite NTT that performs the Number Theoretic Transform (NTT) with a composite modulus. Specifically, based on the composite NTT, we integrate modulus raising and gadget decomposition in the external product, which reduces the number of NTTs required in the blind rotation from 2(dg + 1)n to 2(⌈dg⌉/2 + 1)n. Furthermore, we develop a modulus packing technique that uses the Chinese Remainder Theorem (CRT) and composite NTT to bootstrap multiple LWE ciphertexts through one blind rotation process.We implement the bootstrapping algorithms and evaluate the performance on various benchmark computations using both binary and ternary secret keys. Our results of the single bootstrapping process indicate that the proposed approach achieves speedups of up to 1.7 x, and reduces the size of the blind rotation key by 50% under specific parameters. Finally, we instantiate two ciphertexts in the packing procedure, and the experimental results show that our technique is around 1.5 x faster than the two bootstrapping processes under the 127-bit security level.