International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jenit Tomy

Publications

Year
Venue
Title
2025
PKC
Multi-Client Attribute-Based Unbounded Inner Product Functional Encryption, and More
This paper presents the concept of a multi-client functional encryption (MC-FE) scheme for attribute-based inner product functions (AB-IP), initially proposed by Abdalla et al. [ASIACRYPT’20], in an unbounded setting. In such a setting, the setup is independent of vector length constraints, allowing secret keys to support functions of arbitrary lengths, and clients can dynamically choose vector lengths during encryption. The functionality outputs the sum of inner products if vector lengths and indices meet a specific relation, and all clients’ attributes satisfy the key’s policy. We propose the following constructions based on the matrix decisional Diffie-Hellman assumption in a natural permissive setting of unboundedness: – the first multi-client attribute-based unbounded IPFE (MC-AB-UIPFE) scheme secure in the standard model, overcoming previous limitations where clients could only encrypt fixed-length data; – the first multi-input AB-UIPFE (MI-AB-UIPFE) in the public key setting; improving upon prior bounded constructions under the same assumption; – the first dynamic decentralized UIPFE (DD-UIPFE); enhancing the dynamism property of prior works. Technically, we follow the blueprint of Agrawal et al. [CRYPTO’23] but begin with a new unbounded FE called extended slotted unbounded IPFE. We first construct a single-input AB-UIPFE in the standard model and then extend it to multi-input settings. In a nutshell, our work demonstrates the applicability of function-hiding security of IPFE in realizing variants of multi-input FE capable of encoding unbounded length vectors both at the time of key generation and encryption.
2025
PKC
BUFFing Threshold Signature Schemes
We explore advanced security notions for threshold signature schemes, focusing on Beyond UnForgeability Features (BUFF), introduced by Cremers et al. (S&P’21) in the non-threshold setting. The BUFF properties protect against attacks based on maliciously chosen keys, e.g., expropriating a message-signature pair under a new public key (called exclusive ownership). We first formalize these notions in the threshold setting and examine their relationships. Notably, unlike regular signature schemes, the hierarchy of variants of exclusive ownership notions only holds for threshold schemes if they are also robust. We then present a generic compiler that transforms any threshold signature scheme to satisfy exclusive ownership, and message-bound signature properties with minimal overhead. Furthermore, we modify the threshold BLS signature scheme to achieve these additional properties without increasing signature size. Lastly, we identify specific structures in threshold signature schemes where BUFF properties can be naturally extended from the underlying standard signature scheme, and we analyze and prove the security properties in some of the existing threshold schemes.
2024
PKC
Threshold Structure Preserving Signatures: Strong and Adaptive Security under Standard Assumptions
Structure-preserving signatures (SPS) have emerged as an important cryptographic building block, as their compatibility with the Groth-Sahai (GS) NIZK framework allows to construct protocols under standard assumptions with reasonable efficiency. Over the last years there has been a significant interest in the design of threshold signature schemes. However, only very recently Crites et al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along with a fully non-interactive construction. While this is an important step, their work comes with several limitations. With respect to the construction, they require the use of random oracles, interactive complexity assumptions and are restricted to so called indexed Diffie-Hellman message spaces. Latter limits the use of their construction as a drop-in replacement for SPS. When it comes to security, they only support static corruptions and do not allow partial signature queries for the forgery. In this paper, we ask whether it is possible to construct TSPS without such restrictions. We start from an SPS from Kiltz, Pan and Wee (CRYPTO 2015) which has an interesting structure, but thresholdizing it requires some modifications. Interestingly, we can prove it secure in the strongest model (TS-UF-1) for fully non-interactive threshold signatures (Bellare et al., CRYPTO 2022) and even under fully adaptive corruptions. Surprisingly, we can show the latter under a standard assumption without requiring any idealized model. All known constructions of efficient threshold signatures in the discrete logarithm setting require interactive assumptions and idealized models. Concretely, our scheme in type III bilinear groups under the SXDH assumption has signatures consisting of 7 group elements. Compared to the TSPS from Crites et al. (2 group elements), this comes at the cost of efficiency. However, our scheme is secure under standard assumptions, achieves strong and adaptive security guarantees and supports general message spaces, i.e., represents a drop-in replacement for many SPS applications. Given these features, the increase in the size of the signature seems acceptable even for practical applications.