International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Hadas Zeilberger

Publications

Year
Venue
Title
2025
EUROCRYPT
Blaze: Fast SNARKs from Interleaved RAA Codes
In this work we construct a new and highly efficient multi-linear polynomial commitment scheme (MLPCS) over binary extension fields, which we call Blaze. Polynomial commitment schemes allow a server to commit to a large polynomial and later decommit to its evaluations. Such schemes have emerged as a key component in recent efficient SNARK constructions. Blaze has an extremely efficient prover, both asymptotically and concretely. The commitment is dominated by 8n field additions (i.e., XORs) and one Merkle tree computation. The evaluation proof generation is dominated by 6n additions and 5n multiplications over the field. The verifier runs in time Oλ(log2(n)). Concretely, for sufficiently large message sizes, the prover is faster than all prior schemes except for Brakedown (Golovnev et al., Crypto 2023), but offers significantly smaller proofs than the latter. The scheme is obtained by combining two ingredients: – Building on the code-switching technique (Ron-Zewi and Rothblum, JACM 2024), we show how to compose any error-correcting code together with an interactive oracle proof of proximity (IOPP) underlying existing MLPCS constructions, into a new MLPCS. The new MLPCS inherits its proving time from the code’s encoding time, and its verification complexity from the underlying MLPCS. The composition is distinctive in that it is done purely on the information-theoretic side. – We apply the above methodology using an extremely efficient error-correcting code known as the Repeat-Accumulate-Accumulate (RAA) code. We give new asymptotic and concrete bounds, which demonstrate that (for sufficiently large message sizes) this code has a better encoding time vs. distance tradeoff than previous linear-time encodable codes that were considered in the literature.
2024
CRYPTO
BaseFold: Efficient Field-Agnostic Polynomial Commitment Schemes from Foldable Codes
Hadas Zeilberger Binyi Chen Ben Fisch
This works introduces BaseFold, a new field-agnostic Polynomial Commitment Scheme (PCS) for multilinear polynomials that has O(log^{2}(n)) verifier costs and O(n log n) prover time. An important application of a multilinear PCS is constructing Succinct Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency in applications that require (or benefit from) a certain field choice. Our inspiration for BaseFold is the Fast Reed-Solomon Interactive-Oracle Proof of Proximity (FRI IOPP), which leverages two properties of Reed-Solomon (RS) codes defined over FFT-Friendly fields: O(n log n) encoding time, and a second property that we call foldability. We first introduce a generalization of the FRI IOPP that works over any foldable linear code in linear time. Second, we construct a new family of linear codes which we call random foldable codes, that are a special type of punctured Reed-Muller codes, and prove tight bounds on their minimum distance. Unlike RS codes, our new codes are foldable and have O(n log n) encoding time over any sufficiently large field. Finally, we construct a new multilinear PCS by carefully interleaving our IOPP with the classical sumcheck protocol, which also gives a new multilinear PCS from FRI. BaseFold is 2-3 times faster than prior multilinear PCS constructions from FRI when defined over the same finite field. More significantly, using Hyperplonk (Eurocrypt, 2022) as a multilinear PIOP backend for apples-to-apples comparison, we show that BaseFold results in a SNARK that has better concrete efficiency across a range of field choices than with any prior multilinear PCS in the literature. Hyperplonk with Basefold has a proof size that is more than 10 times smaller than Hyperplonk with Brakedown and its verifier is over 30 times faster for circuits with more than 2^{20} gates. Compared to FRI, Hyperplonk with Basefold retains efficiency over any sufficiently large field. For illustration, with BaseFold we can prove ECDSA signature verification over the secp256k1 curve more than 20 times faster than Hyperplonk with FRI and the verifier is also twice as fast. Proofs of signature verification have many useful applications, including offloading blockchain transactions and enabling anonymous credentials over the web.