International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jinzheng Cao

Publications

Year
Venue
Title
2024
CIC
Optimizing $c$-sum BKW and Faster Quantum Variant for LWE
Jinzheng Cao Qingfeng Cheng Jian Weng
<p> The Learning with Errors (LWE) problem has become one of the most prominent candidates of post-quantum cryptography, offering promising potential to meet the challenge of quantum computing. From a theoretical perspective, optimizing algorithms to solve LWE is a vital task for the analysis of this cryptographic primitive. In this paper, we propose a fine-grained time/memory trade-off method to analyze c-sum BKW variants for LWE in both classical and quantum models, then offer new complexity bounds for multiple BKW variants determined by modulus q, dimension k, error rate alpha, and stripe size b. Through our analysis, optimal parameters can be efficiently found for different settings, and the minimized complexities are lower than existing results. Furthermore, we enhance the performance of c-sum BKW in the quantum computing model by adopting the quantum Meet-in-the-Middle technique as c-sum solver instead of the naive c-sum technique. Our complexity trade-off formula also applies to the quantum version of BKW, and optimizes the theoretical quantum time and memory costs, which are exponentially lower than existing quantum c-sum BKW variants. </p>
2024
CIC
Implicit Factorization with Shared Any Bits
<p>At PKC 2009, May and Ritzenhofen proposed the implicit factorization problem (IFP). They showed that it is undemanding to factor two h-bit RSA moduli N1=p1q1, N2=p2q2 where q1, q2 are both αh-bit, and p1, p2 share uh&gt;2αh the least significant bits (LSBs). Subsequent works mainly focused on extending the IFP to the cases where p1, p2 share some of the most significant bits (MSBs) or the middle bits (MBs). In this paper, we propose a novel generalized IFP where p1 and p2 share an arbitrary number of bit blocks, with each block having a consistent displacement in its position between p1 and p2, and we solve it successfully based on Coppersmith’s method. Specifically, we generate a new set of shift polynomials to construct the lattice and optimize the structure of the lattice by introducing a new variable z=p1. We derive that we can factor the two moduli in polynomial time when u&gt;2(n+1)α(1−α^1/(n+1)) with p1, p2 sharing n blocks. Further, no matter how many blocks are shared, we can theoretically factor the two moduli as long as u&gt;2αln(1/α). In addition, we consider two other cases where the positions of the shared blocks are arbitrary or there are k&gt;2 known moduli. Meanwhile, we provide the corresponding solutions for the two cases. Our work is verified by experiments. </p>