International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Boyang Chen

Publications

Year
Venue
Title
2025
EUROCRYPT
Oracle Separation Between Quantum Commitments and Quantum One-wayness
We show that there exists a unitary quantum oracle relative to which quantum commitments exist but no (efficiently verifiable) one-way state generators exist. Both have been widely considered candidates for replacing one-way functions as the minimal assumption for cryptography—the weakest cryptographic assumption implied by all of computational cryptography. Recent work has shown that commitments can be constructed from one-way state generators, but the other direction has remained open. Our results rule out any black-box construction, and thus settle this crucial open problem, suggesting that quantum commitments (as well as its equivalency class of EFI pairs, quantum oblivious transfer, and secure quantum multiparty computation) appear to be strictly weakest among all known cryptographic primitives.
2025
EUROCRYPT
The power of a single Haar random state: constructing and separating quantum pseudorandomness
In this work, we focus on the following question: what are the cryptographic implications of having access to an oracle that provides a single Haar random quantum state? We find that the study of such a model sheds light on several aspects of the notion of quantum pseudorandomness. Pseudorandom states are a family of states for which it is hard to distinguish between polynomially many copies of either a state sampled uniformly from the family or a Haar random state. A weaker notion, called single-copy pseudorandom states (1PRS), satisfies this property with respect to a single copy. We obtain the following results: 1. First, we show, perhaps surprisingly, that 1PRS (as well as bit-commitments) exist relative to an oracle that provides a single Haar random state. 2. Second, we build on this result to show the existence of a unitary oracle relative to which 1PRS exist, but PRS do not. Taken together, our contributions yield one of the first black-box separations between central notions of quantum pseudorandomness, and introduce a new framework to study black-box separations between various inherently quantum primitives.