CryptoDB
Marine Minier
Publications
Year
Venue
Title
2024
TOSC
On Impossible Boomerang Attacks: Application to Simon and SKINNYee
Abstract
The impossible boomerang attack, introduced in 2008 by Jiqiang Lu, is an extension of the impossible differential attack that relies on a boomerang distinguisher of probability 0 for discarding incorrect key guesses. In Lu’s work, the considered impossible boomerang distinguishers were built from 4 (different) probability-1 differentials that lead to 4 differences that do not sum to 0 in the middle, in a miss-in-the-middle way.In this article, we study the possibility of extending this notion by looking at finerlevel contradictions that derive from boomerang switch constraints. We start by discussing the case of quadratic Feistel ciphers and in particular of the Simon ciphers. We exploit their very specific boomerang constraints to enforce a contradiction that creates a new type of impossible boomerang distinguisher that we search with an SMT solver. We next switch to word-oriented ciphers and study how to leverage the Boomerang Connectivity Table contradictions. We apply this idea to SKINNYee, a recent tweakable block cipher proposed at Crypto 2022 and obtain a 21-round distinguisher.After detailing the process and the complexities of an impossible boomerang attack in the single (twea)key and related (twea)key model, we extend our distinguishers into attacks and present a 23-round impossible boomerang attack on Simon-32/64 (out of 32 rounds) and a 29-round impossible boomerang attack on SKINNYee (out of 56 rounds). To the best of our knowledge our analysis covers two more rounds than the (so far, only) other third-party analysis of SKINNYee that has been published to date.
2022
TOSC
Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP
Abstract
In this paper we present a boomerang analysis of WARP, a recently proposed Generalized Feistel Network with extremely compact hardware implementations. We start by looking for boomerang characteristics that directly take into account the boomerang switch effects by showing how to adapt Delaune et al. automated tool to the case of Feistel ciphers, and discuss several improvements to keep the execution time reasonable. This technique returns a 23-round distinguisher of probability 2−124, which becomes the best distinguisher presented on WARP so far. We then look for an attack by adding the key recovery phase to our model and we obtain a 26-round rectangle attack with time and data complexities of 2115.9 and 2120.6 respectively, again resulting in the best result presented so far. Incidentally, our analysis discloses how an attacker can take advantage of the position of the key addition (put after the S-box application to avoid complementation properties), which in our case offers an improvement of a factor of 275 of the time complexity in comparison to a variant with the key addition positioned before. Note that our findings do not threaten the security of the cipher which iterates 41 rounds.
2021
TOSC
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation
📺
Abstract
In this work, we propose a construction of 2-round tweakable substitutionpermutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When instantiated with an n-bit block cipher with ωn-bit keys, the resulting tweakable block cipher, dubbed CTET+, can be viewed as a tweakable enciphering scheme that encrypts ωκ-bit messages for any integer ω ≥ 2 using 5n + κ-bit keys and n-bit tweaks, providing 2n/3-bit security.Compared to the 2-round non-linear SPN analyzed in [CDK+18], we both minimize it by requiring a single permutation, and weaken the requirements on the middle linear layer, allowing better performance. As a result, CTET+ becomes the first tweakable enciphering scheme that provides beyond-birthday-bound security using a single permutation, while its efficiency is still comparable to existing schemes including AES-XTS, EME, XCB and TET. Furthermore, we propose a new tweakable enciphering scheme, dubbed AES6-CTET+, which is an actual instantiation of CTET+ using a reduced round AES block cipher as the underlying secret S-box. Extensivecryptanalysis of this algorithm allows us to claim 127 bits of security.Such tweakable enciphering schemes with huge block sizes become desirable in the context of disk encryption, since processing a whole sector as a single block significantly worsens the granularity for attackers when compared to, for example, AES-XTS, which treats every 16-byte block on the disk independently. Besides, as a huge amount of data is being stored and encrypted at rest under many different keys in clouds, beyond-birthday-bound security will most likely become necessary in the short term.
2020
TOSC
On the Feistel Counterpart of the Boomerang Connectivity Table: Introduction and Analysis of the FBCT
📺
Abstract
At Eurocrypt 2018, Cid et al. introduced the Boomerang Connectivity Table (BCT), a tool to compute the probability of the middle round of a boomerang distinguisher from the description of the cipher’s Sbox(es). Their new table and the following works led to a refined understanding of boomerangs, and resulted in a series of improved attacks. Still, these works only addressed the case of Substitution Permutation Networks, and completely left out the case of ciphers following a Feistel construction. In this article, we address this lack by introducing the FBCT, the Feistel counterpart of the BCT. We show that the coefficient at row Δi, ∇o corresponds to the number of times the second order derivative at points Δi, ∇o) cancels out. We explore the properties of the FBCT and compare it to what is known on the BCT. Taking matters further, we show how to compute the probability of a boomerang switch over multiple rounds with a generic formula.
2011
FSE
Program Committees
- FSE 2011
Coauthors
- Céline Blondeau (1)
- Xavier Bonnetain (1)
- Hamid Boukerrou (1)
- Benoît Cogliati (1)
- Margarita Cordero (1)
- Jordan Ethan (1)
- Henri Gilbert (3)
- Paul Huynh (1)
- Virginie Lallemand (4)
- ByeongHak Lee (1)
- Jooyoung Lee (1)
- Bimal Mandal (1)
- Marine Minier (9)
- María Naya-Plasencia (2)
- Thomas Peyrin (1)
- Loïc Rouquette (1)