CryptoDB
Lei Hu
ORCID: 0000-0002-9920-5342
Publications
Year
Venue
Title
2024
JOFC
2024
EUROCRYPT
Probabilistic Extensions: A One-Step Framework for Finding Rectangle Attacks and Beyond
Abstract
In differential-like attacks, the process typically involves extending a distinguisher forward and backward with probability 1 for some rounds and recovering the key involved in the extended part. Particularly in rectangle attacks, a holistic key recovery strategy can be employed to yield the most efficient attacks tailored to a given distinguisher. In this paper, we treat the distinguisher and the extended part as an integrated entity and give a one-step framework for finding rectangle attacks with the purpose of reducing the overall complexity or attacking more rounds. In this framework, we propose to allow probabilistic differential propagations in the extended part and incorporate the holistic recovery strategy. Additionally, we introduce the ``split-and-bunch technique'' to further reduce the time complexity. Beyond rectangle attacks, we extend these foundational concepts to encompass differential attacks as well. To demonstrate the efficiency of our framework, we apply it to Deoxys-BC-384, SKINNY, ForkSkinny, and CRAFT, achieving a series of refined and improved rectangle attacks and differential attacks. Notably, we obtain the first 15-round attack on Deoxys-BC-384, narrowing its security margin to only one round. Furthermore, our differential attack on CRAFT extends to 23 rounds, covering two more rounds than the previous best attacks.
2024
TOSC
Small Stretch Problem of the DCT Scheme and How to Fix It
Abstract
DCT is a beyond-birthday-bound (BBB) deterministic authenticated encryption (DAE) mode proposed by Forler et al. in ACISP 2016, ensuring integrity by redundancy. The instantiation of DCT employs the BRW polynomial, which is more efficient than the usual polynomial in GCM by reducing half of the multiplication operations. However, we show that DCT suffers from a small stretch problem similar to GCM. When the stretch length τ is small, choosing a special m-block message, we can reduce the number of queries required by a successful forgery to O(2τ/m). We emphasize that this attack efficiently balances space and time complexity but does not contradict the security bounds of DCT. Finally, we propose an improved scheme named Robust DCT (RDCT) with a minor change to DCT, which improves the security when τ is small and makes it resist the above attack.
2024
ASIACRYPT
Generic Differential Key Recovery Attacks and Beyond
Abstract
At Asiacrypt 2022, a holistic key guessing strategy was proposed to yield the most efficient key recovery for the rectangle attack. Recently, at Crypto 2023, a new cryptanalysis technique--the differential meet-in-the-middle (MITM) attack--was introduced. Inspired by these two previous works, we present three generic key recovery attacks in this paper. First, we extend the holistic key guessing strategy from the rectangle to the differential attack, proposing the generic classical differential attack (GCDA). Next, we combine the holistic key guessing strategy with the differential MITM attack, resulting in the generalized differential MITM attack (GDMA). Finally, we apply the MITM technique to the rectangle attack, creating the generic rectangle MITM attack (GRMA). In terms of applications, we improve 12/13-round attacks on AES-256. For 12-round AES-256, by using the GDMA, we reduce the time complexity by a factor of 2^{62}; by employing the GCDA, we reduce both the time and memory complexities by factors of 2^{61} and 2^{56}, respectively. For 13-round AES-256, we present a new differential attack with data and time complexities of 2^{89} and 2^{240}, where the data complexity is 2^{37} times lower than previously published results. These are currently the best attacks on AES-256 using only two related keys. For KATAN-32, we increase the number of rounds covered by the differential attack from 115 to 151 in the single-key setting using the basic differential MITM attack (BDMA) and GDMA. Furthermore, we achieve the first 38-round rectangle attack on SKINNYe-64-256 v2 by using the GRMA.
2023
EUROCRYPT
Exploiting Non-Full Key Additions: Full-Fledged Automatic Demirci-Sel{\c{c}}uk Meet-in-the-Middle Cryptanalysis of SKINNY
Abstract
The Demirci-Sel{\c{c}}uk meet-in-the-middle (DS-MITM) attack is
a sophisticated variant of differential attacks.
Due to its sophistication, it is hard to efficiently find the best
DS-MITM attacks on most ciphers \emph{except} for AES.
Moreover, the current automatic tools
only capture the most basic version of DS-MITM attacks, and the
critical techniques developed for enhancing the attacks
(e.g., differential enumeration and key-dependent-sieve) still rely
on manual work. In this paper, we develop a full-fledged automatic
framework integrating all known techniques
(differential enumeration, key-dependent-sieve, and key bridging, etc)
for the DS-MITM attack that can produce key-recovery
attacks directly rather than only search for distinguishers. Moreover,
we develop a new technique that is able to exploit partial key additions
to generate more linear relations beneficial to the attacks.
We apply the framework to the SKINNY family of block ciphers
and significantly improved results are obtained. In particular,
all known DS-MITM attacks on the respective versions of SKINNY are improved by at least 2 rounds,
and the data, memory, or time complexities of some attacks
are reduced even compared to previous best attacks penetrating less rounds.
2023
TOSC
Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing
Abstract
At EUROCRYPT 2006, Kelsey and Kohno proposed the so-called chosen target forced-prefix (CTFP) preimage attack, where for any challenge prefix P, the attacker can generate a suffix S such that H(P∥S) = y for some hash value y published in advance by the attacker. Consequently, the attacker can pretend to predict some event represented by P she did not know before, and thus this type of attack is also known as the Nostradamus attack. At ASIACRYPT 2022, Benedikt et al. convert Kelsey et al.’s attack to a quantum one, reducing the time complexity from O(√n · 22n/3) to O( 3√n · 23n/7). CTFP preimage attack is less investigated in the literature than (second-)preimage and collision attacks and lacks dedicated methods. In this paper, we propose the first dedicated Nostradamus attack based on the meet-in-the-middle (MITM) attack, and the MITM Nostradamus attack could be up to quadratically accelerated in the quantum setting. According to the recent works on MITM preimage attacks on AES-like hashing, we build an automatic tool to search for optimal MITM Nostradamus attacks and model the tradeoff between the offline and online phases. We apply our method to AES-MMO and Whirlpool, and obtain the first dedicated attack on round-reduced version of these hash functions. Our method and automatic tool are applicable to other AES-like hashings.
2022
TOSC
Improved MITM Cryptanalysis on Streebog
Abstract
At ASIACRYPT 2012, Sasaki et al. introduced the guess-and-determine approach to extend the meet-in-the-middle (MITM) preimage attack. At CRYPTO 2021, Dong et al. proposed a technique to derive the solution spaces of nonlinear constrained neutral words in the MITM preimage attack. In this paper, we try to combine these two techniques to further improve the MITM preimage attacks. Based on the previous MILP-based automatic tools for MITM attacks, we introduce new constraints due to the combination of guess-and-determine and nonlinearly constrained neutral words to build a new automatic model.As a proof of work, we apply it to the Russian national standard hash function Streebog, which is also an ISO standard. We find the first 8.5-round preimage attack on Streebog-512 compression function and the first 7.5-round preimage attack on Streebog-256 compression function. In addition, we give the 8.5-round preimage attack on Streebog-512 hash function. Our attacks extend the best previous attacks by one round. We also improve the time complexity of the 7.5-round preimage attack on Streebog-512 hash function and 6.5-round preimage attack on Streebog-256 hash function.
2022
ASIACRYPT
Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery
📺
Abstract
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery in depth and propose a unified and generic key recovery algorithm, which supports any possible attacking parameters. Notably, it not only covers the four previous rectangle key recovery algorithms, but also unveils five types of new attacks which were missed previously. Along with the new key recovery algorithm, we propose a framework for automatically finding the best attacking parameters, with which the time complexity of the rectangle attack will be minimized using the new algorithm. To demonstrate the efficiency of the new key recovery algorithm, we apply it to Serpent, CRAFT, SKINNY and Deoxys-BC-256 based on existing distinguishers and obtain a series of improved rectangle attacks.
2022
ASIACRYPT
Improving Bounds on Elliptic Curve Hidden Number Problem for ECDH Key Exchange
📺
Abstract
Elliptic Curve Hidden Number Problem (EC-HNP) was first introduced by Boneh, Halevi and Howgrave-Graham at Asiacrypt 2001. To rigorously assess the bit security of the Diffie--Hellman key exchange with elliptic curves (ECDH), the Diffie--Hellman variant of EC-HNP, regarded as an elliptic curve analogy of the Hidden Number Problem (HNP), was presented at PKC 2017. This variant can also be used for practical cryptanalysis of ECDH key exchange in the situation of side-channel attacks.
In this paper, we revisit the Coppersmith method for solving the involved modular multivariate polynomials in the Diffie--Hellman variant of EC-HNP and demonstrate that, for any given positive integer $d$, a given sufficiently large prime $p$, and a fixed elliptic curve over the prime field $\mathbb{F}_p$, if there is an oracle that outputs about $\frac{1}{d+1}$ of the most (least) significant bits of the $x$-coordinate of the ECDH key, then one can give a heuristic algorithm to compute all the bits within polynomial time in $\log_2 p$. When $d>1$, the heuristic result $\frac{1}{d+1}$ significantly outperforms both the rigorous bound $\frac{5}{6}$ and heuristic bound $\frac{1}{2}$. Due to the heuristics involved in the Coppersmith method, we do not get the ECDH bit security on a fixed curve. However, we experimentally verify the effectiveness of the heuristics on NIST curves for small dimension lattices.
2022
TOSC
New Properties of the Double Boomerang Connectivity Table
Abstract
The double boomerang connectivity table (DBCT) is a new table proposed recently to capture the behavior of two consecutive S-boxes in boomerang attacks. In this paper, we observe an interesting property of DBCT of S-box that the ladder switch and the S-box switch happen in most cases for two continuous S-boxes, and for some S-boxes only S-box switch and ladder switch are possible. This property implies an additional criterion for S-boxes to resist the boomerang attacks and provides as well a new evaluation direction for an S-box. Using an extension of the DBCT, we verify that some boomerang distinguishers of TweAES and Deoxys are flawed. On the other hand, inspired by the property, we put forward a formula for estimating boomerang cluster probabilities. Furthermore, we introduce the first model to search for boomerang distinguishers with good cluster probabilities. Applying the model to CRAFT, we obtain 9-round and 10-round boomerang distinguishers with a higher probability than that of previous works.
2022
JOFC
Rotational Differential-Linear Cryptanalysis Revisited
Abstract
The differential-linear attack, combining the power of the two most effective techniques for symmetric-key cryptanalysis, was proposed by Langford and Hellman at CRYPTO 1994. From the exact formula for evaluating the bias of a differential-linear distinguisher (JoC 2017), to the differential-linear connectivity table technique for dealing with the dependencies in the switch between the differential and linear parts (EUROCRYPT 2019), and to the improvements in the context of cryptanalysis of ARX primitives (CRYPTO 2020, EUROCRYPT 2021), we have seen significant development of the differential-linear attack during the last four years. In this work, we further extend this framework by replacing the differential part of the attack by rotational-XOR differentials. Along the way, we establish the theoretical link between the rotational-XOR differential and linear approximations and derive the closed formula for the bias of rotational differential-linear distinguishers, completely generalizing the results on ordinary differential-linear distinguishers due to Blondeau, Leander, and Nyberg (JoC 2017) to the case of rotational differential-linear cryptanalysis. We then revisit the rotational cryptanalysis from the perspective of differential-linear cryptanalysis and generalize Morawiecki et al.’s technique for analyzing Keccak , which leads to a practical method for estimating the bias of a (rotational) differential-linear distinguisher in the special case where the output linear mask is a unit vector. Finally, we apply the rotational differential-linear technique to the cryptographic permutations involved in FRIET , Xoodoo , Alzette , and SipHash . This gives significant improvements over existing cryptanalytic results, or offers explanations for previous experimental distinguishers without a theoretical foundation. To confirm the validity of our analysis, all distinguishers with practical complexities are verified experimentally. Moreover, we discuss the possibility of applying the rotational differential-linear technique to S-box-based designs or keyed primitives, and propose some open problems for future research.
2021
CRYPTO
Meet-in-the-Middle Attacks Revisited: Key-recovery, Collision, and Preimage Attacks
📺
Abstract
At EUROCRYPT 2021, Bao et al. proposed an automatic method for systematically exploring the configuration space of meet-in-the-middle (MITM) preimage attacks. We further extend it into a constraint-based framework for finding exploitable MITM characteristics in the context of key-recovery and collision attacks by taking the subtle peculiarities of both scenarios into account. Moreover, to perform attacks based on MITM characteristics with nonlinear constrained neutral words, which have not been seen before, we present a procedure for deriving the solution spaces of neutral words without solving the corresponding nonlinear equations or increasing the overall time complexities of the attack. We apply our method to concrete symmetric-key primitives, including SKINNY, ForkSkinny, Romulus-H, Saturnin, Grostl, Whirlpool, and hashing modes with AES-256. As a result, we identify the first 23-round key-recovery attack on \skinny-$n$-$3n$ and the first 24-round key-recovery attack on ForkSkinny-$n$-$3n$ in the single-key model. Moreover, improved (pseudo) preimage
or collision attacks on round-reduced Whirlpool, Grostl, and hashing modes with AES-256 are obtained. In particular, imploying the new representation of the \AES key schedule due to Leurent and Pernot (EUROCRYPT 2021), we identify the first preimage attack on 10-round AES-256 hashing.
2021
ASIACRYPT
Automatic Classical and Quantum Rebound Attacks on AES-like Hashing by Exploiting Related-key Differentials
📺
Abstract
Collision attacks on AES-like hashing (hash functions constructed
by plugging AES-like ciphers or permutations into the famous PGV modes or their variants)
can be reduced to the problem of finding a pair of inputs respecting
a differential of the underlying AES-like primitive whose input and
output differences are the same. The rebound attack due to Mendel et al.
is a powerful tool for achieving this goal, whose quantum version
was first considered by Hosoyamada and Sasaki at EUROCRYPT 2020.
In this work, we automate the process of searching for the configurations
of rebound attacks by taking related-key differentials of the underlying
block cipher into account with the MILP-based approach.
In the quantum setting, our model guide the search towards
characteristics that minimize the resources (e.g., QRAM)
and complexities of the resulting rebound attacks.
We apply our method to Saturnin-hash, Skinny, and Whirlpool and improved results are obtained.
2021
ASIACRYPT
A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs
📺
Abstract
Research on key mismatch attacks against lattice-based KEMs is an important part of the cryptographic assessment of the ongoing NIST standardization of post-quantum cryptography. There have been a number of these attacks to date. However, a unified method to evaluate these KEMs' resilience under key mismatch attacks is still missing. Since the key index of efficiency is the number of queries needed to successfully mount such an attack, in this paper, we propose and develop a systematic approach to find lower bounds on the minimum average number of queries needed for such attacks. Our basic idea is to transform the problem of finding the lower bound of queries into finding an optimal binary recovery tree (BRT), where the computations of the lower bounds become essentially the computations of a certain Shannon entropy. The optimal BRT approach also enables us to understand why, for some lattice-based NIST candidate KEMs, there is a big gap between the theoretical bounds and bounds observed in practical attacks, in terms of the number of queries needed. This further leads us to propose a generic improvement method for these existing attacks, which are confirmed by our experiments. Moreover, our proposed method could be directly used to improve the side-channel attacks against CCA-secure NIST candidate KEMs.
2020
TOSC
Lightweight Iterative MDS Matrices: How Small Can We Go?
📺
Abstract
As perfect building blocks for the diffusion layers of many symmetric-key primitives, the construction of MDS matrices with lightweight circuits has received much attention from the symmetric-key community. One promising way of realizing low-cost MDS matrices is based on the iterative construction: a low-cost matrix becomes MDS after rising it to a certain power. To be more specific, if At is MDS, then one can implement A instead of At to achieve the MDS property at the expense of an increased latency with t clock cycles. In this work, we identify the exact lower bound of the number of nonzero blocks for a 4 × 4 block matrix to be potentially iterative-MDS. Subsequently, we show that the theoretically lightest 4 × 4 iterative MDS block matrix (whose entries or blocks are 4 × 4 binary matrices) with minimal nonzero blocks costs at least 3 XOR gates, and a concrete example achieving the 3-XOR bound is provided. Moreover, we prove that there is no hope for previous constructions (GFS, LFS, DSI, and spares DSI) to beat this bound. Since the circuit latency is another important factor, we also consider the lower bound of the number of iterations for certain iterative MDS matrices. Guided by these bounds and based on the ideas employed to identify them, we explore the design space of lightweight iterative MDS matrices with other dimensions and report on improved results. Whenever we are unable to find better results, we try to determine the bound of the optimal solution. As a result, the optimality of some previous results is proved.
2020
TOSC
Differential Attacks on CRAFT Exploiting the Involutory S-boxes and Tweak Additions
📺
Abstract
CRAFT is a lightweight tweakable block cipher proposed at FSE 2019, which allows countermeasures against Differential Fault Attacks to be integrated into the cipher at the algorithmic level with ease. CRAFT employs a lightweight and involutory S-box and linear layer, such that the encryption function can be turned into decryption at a low cost. Besides, the tweakey schedule algorithm of CRAFT is extremely simple, where four 64-bit round tweakeys are generated and repeatedly used. Due to a combination of these features which makes CRAFT exceedingly lightweight, we find that some input difference at a particular position can be preserved through any number of rounds if the input pair follows certain truncated differential trails. Interestingly, in contrast to traditional differential analysis, the validity of this invariant property is affected by the positions where the constant additions take place. We use this property to construct “weak-tweakey” truncated differential distinguishers of CRAFT in the single-key model. Subsequently, we show how the tweak additions allow us to convert these weak-tweakey distinguishers into ordinary secret-key distinguishers based on which key-recovery attacks can be performed. Moreover, we show how to construct MILP models to search for truncated differential distinguishers exploiting this invariant property. As a result, we find a 15-round truncated differential distinguisher of CRAFT and extend it to a 19-round key-recovery attack with 260.99 data, 268 memory, 294.59 time complexity, and success probability 80.66%. Also, we find a 14-round distinguisher with probability 2−43 (experimentally verified), a 16-round distinguisher with probability 2−55, and a 20-round weak-key distinguisher (2118 weak keys) with probability 2−63. Experiments on round-reduced versions of the distinguishers show that the experimental probabilities are sometimes higher than predicted. Finally, we note that our result is far from threatening the security of the full CRAFT.
2020
ASIACRYPT
Quantum Collision Attacks on AES-like Hashing with Low Quantum Random Access Memories
📺
Abstract
At EUROCRYPT 2020, Hosoyamada and Sasaki proposed the first dedicated quantum attack on hash functions -- a quantum version of the rebound attack exploiting differentials whose probabilities are too low to be useful in the classical setting. This work opens up a new perspective toward the security of hash functions against quantum attacks. In particular, it tells us that the search for differentials should not stop at the classical birthday bound. Despite these interesting and promising implications, the concrete attacks described by Hosoyamada and Sasaki make use of large quantum random access memories (qRAMs), a resource whose availability in the foreseeable future is controversial even in the quantum computation community. Without large qRAMs, these attacks incur significant increases in time complexities. In this work, we reduce or even avoid the use of qRAMs by performing a quantum rebound attack based on differentials with non-full-active super S-boxes. Along the way, an MILP-based method is proposed to systematically explore the search space of useful truncated differentials with respect to rebound attacks. As a result, we obtain improved attacks on \aes-\texttt{MMO}, \aes-\texttt{MP}, and the first classical collision attacks on 4- and 5-round \grostl-\texttt{512}.
Interestingly, the use of non-full-active super S-box differentials in the analysis of \aes-\texttt{MMO} gives rise to new difficulties in collecting enough starting points. To overcome this issue, we consider attacks involving two message blocks to gain more degrees of freedom, and we successfully compress the qRAM demand of the collision attacks on \texttt{AES}-\texttt{MMO} and \texttt{AES}-\texttt{MP} (EUROCRYPT 2020) from $2^{48}$ to a range from $2^{16}$ to $0$, while still maintaining a comparable time complexity.
To the best of our knowledge, these are the first dedicated quantum attacks on hash functions that slightly outperform Chailloux, Naya-Plasencia, and Schrottenloher's generic quantum collision attack (ASIACRYPT 2017) in a model where large qRAMs are not available. This work demonstrates again how a clever combination of classical cryptanalytic technique and quantum computation leads to improved attacks, and shows that the direction pointed out by Hosoyamada and Sasaki deserves further investigation.
2019
TOSC
Constructing Low-latency Involutory MDS Matrices with Lightweight Circuits
📺
Abstract
MDS matrices are important building blocks providing diffusion functionality for the design of many symmetric-key primitives. In recent years, continuous efforts are made on the construction of MDS matrices with small area footprints in the context of lightweight cryptography. Just recently, Duval and Leurent (ToSC 2018/FSE 2019) reported some 32 × 32 binary MDS matrices with branch number 5, which can be implemented with only 67 XOR gates, whereas the previously known lightest ones of the same size cost 72 XOR gates.In this article, we focus on the construction of lightweight involutory MDS matrices, which are even more desirable than ordinary MDS matrices, since the same circuit can be reused when the inverse is required. In particular, we identify some involutory MDS matrices which can be realized with only 78 XOR gates with depth 4, whereas the previously known lightest involutory MDS matrices cost 84 XOR gates with the same depth. Notably, the involutory MDS matrix we find is much smaller than the AES MixColumns operation, which requires 97 XOR gates with depth 8 when implemented as a block of combinatorial logic that can be computed in one clock cycle. However, with respect to latency, the AES MixColumns operation is superior to our 78-XOR involutory matrices, since the AES MixColumns can be implemented with depth 3 by using more XOR gates.We prove that the depth of a 32 × 32 MDS matrix with branch number 5 (e.g., the AES MixColumns operation) is at least 3. Then, we enhance Boyar’s SLP-heuristic algorithm with circuit depth awareness, such that the depth of its output circuit is limited. Along the way, we give a formula for computing the minimum achievable depth of a circuit implementing the summation of a set of signals with given depths, which is of independent interest. We apply the new SLP heuristic to a large set of lightweight involutory MDS matrices, and we identify a depth 3 involutory MDS matrix whose implementation costs 88 XOR gates, which is superior to the AES MixColumns operation with respect to both lightweightness and latency, and enjoys the extra involution property.
2019
TOSC
Boomerang Connectivity Table Revisited. Application to SKINNY and AES
📺
Abstract
The boomerang attack is a variant of differential cryptanalysis which regards a block cipher E as the composition of two sub-ciphers, i.e., E = E1 o E0, and which constructs distinguishers for E with probability p2q2 by combining differential trails for E0 and E1 with probability p and q respectively. However, the validity of this attack relies on the dependency between the two differential trails. Murphy has shown cases where probabilities calculated by p2q2 turn out to be zero, while techniques such as boomerang switches proposed by Biryukov and Khovratovich give rise to probabilities greater than p2q2. To formalize such dependency to obtain a more accurate estimation of the probability of the distinguisher, Dunkelman et al. proposed the sandwich framework that regards E as Ẽ1 o Em o Ẽ0, where the dependency between the two differential trails is handled by a careful analysis of the probability of the middle part Em. Recently, Cid et al. proposed the Boomerang Connectivity Table (BCT) which unifies the previous switch techniques and incompatibility together and evaluates the probability of Em theoretically when Em is composed of a single S-box layer. In this paper, we revisit the BCT and propose a generalized framework which is able to identify the actual boundaries of Em which contains dependency of the two differential trails and systematically evaluate the probability of Em with any number of rounds. To demonstrate the power of this new framework, we apply it to two block ciphers SKINNY and AES. In the application to SKINNY, the probabilities of four boomerang distinguishers are re-evaluated. It turns out that Em involves5 or 6 rounds and the probabilities of the full distinguishers are much higher than previously evaluated. In the application to AES, the new framework is used to exclude incompatibility and find high probability distinguishers of AES-128 under the related-subkey setting. As a result, a 6-round distinguisher with probability 2−109.42 is constructed. Lastly, we discuss the relation between the dependency of two differential trails in boomerang distinguishers and the properties of components of the cipher.
2019
CRYPTO
New Results on Modular Inversion Hidden Number Problem and Inversive Congruential Generator
📺
Abstract
The Modular Inversion Hidden Number Problem (MIHNP), introduced by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001, is briefly described as follows: Let $${\mathrm {MSB}}_{\delta }(z)$$ refer to the $$\delta $$ most significant bits of z. Given many samples $$\left( t_{i}, {\mathrm {MSB}}_{\delta }((\alpha + t_{i})^{-1} \bmod {p})\right) $$ for random $$t_i \in \mathbb {Z}_p$$, the goal is to recover the hidden number $$\alpha \in \mathbb {Z}_p$$. MIHNP is an important class of Hidden Number Problem.In this paper, we revisit the Coppersmith technique for solving a class of modular polynomial equations, which is respectively derived from the recovering problem of the hidden number $$\alpha $$ in MIHNP. For any positive integer constant d, let integer $$n=d^{3+o(1)}$$. Given a sufficiently large modulus p, $$n+1$$ samples of MIHNP, we present a heuristic algorithm to recover the hidden number $$\alpha $$ with a probability close to 1 when $$\delta /\log _2 p>\frac{1}{d\,+\,1}+o(\frac{1}{d})$$. The overall time complexity of attack is polynomial in $$\log _2 p$$, where the complexity of the LLL algorithm grows as $$d^{\mathcal {O}(d)}$$ and the complexity of the Gröbner basis computation grows as $$(2d)^{\mathcal {O}(n^2)}$$. When $$d> 2$$, this asymptotic bound outperforms $$\delta /\log _2 p>\frac{1}{3}$$ which is the asymptotic bound proposed by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001. It is the first time that a better bound for solving MIHNP is given, which implies that the conjecture that MIHNP is hard whenever $$\delta /\log _2 p<\frac{1}{3}$$ is broken. Moreover, we also get the best result for attacking the Inversive Congruential Generator (ICG) up to now.
2019
CRYPTO
Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full $\mathsf {MORUS}$
📺
Abstract
We show that the correlation of any quadratic Boolean function can be read out from its so-called disjoint quadratic form. We further propose a polynomial-time algorithm that can transform an arbitrary quadratic Boolean function into its disjoint quadratic form. With this algorithm, the exact correlation of quadratic Boolean functions can be computed efficiently.We apply this method to analyze the linear trails of $$\mathsf {MORUS}$$ (one of the seven finalists of the CAESAR competition), which are found with the help of a generic model for linear trails of $$\mathsf {MORUS}$$-like key-stream generators. In our model, any tool for finding linear trails of block ciphers can be used to search for trails of $$\mathsf {MORUS}$$-like key-stream generators. As a result, a set of trails with correlation $$2^{-38}$$ is identified for all versions of full $$\mathsf {MORUS}$$, while the correlations of previously published best trails for $$\mathsf {MORUS}$$-640 and $$\mathsf {MORUS}$$-1280 are $$2^{-73}$$ and $$2^{-76}$$ respectively (ASIACRYPT 2018). This significantly improves the complexity of the attack on $$\mathsf {MORUS}$$-1280-256 from $$2^{152}$$ to $$2^{76}$$. These new trails also lead to the first distinguishing and message-recovery attacks on $$\mathsf {MORUS}$$-640-128 and $$\mathsf {MORUS}$$-1280-128 with surprisingly low complexities around $$2^{76}$$.Moreover, we observe that the condition for exploiting these trails in an attack can be more relaxed than previously thought, which shows that the new trails are superior to previously published ones in terms of both correlation and the number of ciphertext blocks involved.
2018
ASIACRYPT
Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints
Abstract
Cryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanalysis. However, the Demirci-Selçuk meet-in-the-middle ($$\mathcal {DS}$$-$$\mathsf {MITM}$$) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque’s work on $$\mathcal {DS}$$-$$\mathsf {MITM}$$ analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attack based on general constraint programming, which allows the cryptanalysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distinguishers but can also partly automate the key-recovery process. This approach makes the $$\mathcal {DS}$$-$$\mathsf {MITM}$$ cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of $$8! = 40320$$ versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the $$\mathcal {DS}$$-$$\mathsf {MITM}$$ attack. The whole process is accomplished on a PC in less than 2 h. The same process is applied to TWINE, and similar results are obtained.
2017
TOSC
Analysis of AES, SKINNY, and Others with Constraint Programming
Abstract
Search for different types of distinguishers are common tasks in symmetrickey cryptanalysis. In this work, we employ the constraint programming (CP) technique to tackle such problems. First, we show that a simple application of the CP approach proposed by Gerault et al. leads to the solution of the open problem of determining the exact lower bound of the number of active S-boxes for 6-round AES-128 in the related-key model. Subsequently, we show that the same approach can be applied in searching for integral distinguishers, impossible differentials, zero-correlation linear approximations, in both the single-key and related-(twea)key model. We implement the method using the open source constraint solver Choco and apply it to the block ciphers PRESENT, SKINNY, and HIGHT (ARX construction). As a result, we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-128 based on which we construct an 18-round attack on SKINNY-64-128 (one target version for the crypto competition https://sites.google.com/site/skinnycipher announced at ASK 2016). Moreover, we show that in some cases, when equipped with proper strategies (ordering heuristic, restart and dynamic branching strategy), the CP approach can be very efficient. Therefore, we suggest that the constraint programming technique should become a convenient tool at hand of the symmetric-key cryptanalysts.
Coauthors
- Yincen Chen (2)
- Yuchao Chen (1)
- Chen-Mou Cheng (1)
- Patrick Derbez (1)
- Jintai Ding (2)
- Xiaoyang Dong (4)
- Kai Fu (1)
- Fei Gao (1)
- David Gerault (1)
- Tingting Guo (1)
- Yinghua Guo (1)
- Hao Guo (1)
- Lei Hu (26)
- Jialiang Hua (2)
- Pascal Lafourcade (1)
- Jianyu Li (1)
- Chaoyun Li (3)
- Zheng Li (1)
- Chao Li (1)
- Shun Li (2)
- Huimin Liu (1)
- Yunwen Liu (1)
- Xiaoshuang Ma (1)
- Shuping Mao (1)
- Xuyun Nie (1)
- Qihua Niu (1)
- Yanbin Pan (2)
- Kexin Qiao (2)
- Yu Qin (1)
- Xianrui Qin (1)
- Santanu Sarkar (2)
- Yu Sasaki (1)
- Lina Shang (1)
- Danping Shi (9)
- Ling Song (8)
- Bing Sun (1)
- Ling Sun (1)
- Siwei Sun (16)
- Yao Sun (1)
- Yosuke Todo (2)
- John Wagner (1)
- Huaxiong Wang (2)
- Caibing Wang (1)
- Xiaoyun Wang (4)
- Libo Wang (1)
- Peng Wang (2)
- Meiqin Wang (2)
- Congming Wei (1)
- Zihao Wei (1)
- Jian Weng (4)
- Jun Xu (2)
- Qianqian Yang (7)
- Neng Zhang (1)
- Nana Zhang (1)
- Xiaohan Zhang (1)
- Zhiyu Zhang (3)
- Jiahao Zhao (1)
- Jingyuan Zhao (1)