International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Tsz Hon Yuen

Publications

Year
Venue
Title
2024
CIC
Exponent-Inversion P-Signatures and Accountable Identity-Based Encryption from SXDH
<p>Salient in many cryptosystems, the exponent-inversion technique began without randomization in the random oracle model (SCIS '03, PKC '04), evolved into the Boneh-Boyen short signature scheme (JoC '08) and exerted a wide influence. Seen as a notable case, Gentry's (EuroCrypt '06) identity-based encryption (IBE) applies exponent inversion on a randomized base in its identity-based trapdoors. Making use of the non-static q-strong Diffie-Hellman assumption, Boneh-Boyen signatures are shown to be unforgeable against q-chosen-message attacks, while a variant q-type decisional assumption is used to establish the security of Gentry-IBE. Challenges remain in proving their security under weaker static assumptions.</p><p>Supported by the dual form/system framework (Crypto '09, AsiaCrypt '12), we propose dual form exponent-inversion Boneh-Boyen signatures and Gentry-IBE, with security proven under the symmetric external Diffie-Hellman (SXDH) assumption. Starting from our signature scheme, we extend it into P-signatures (TCC '08), resulting in the first anonymous credential scheme from the SXDH assumption, serving as a competitive alternative to the static-assumption construction of Abe et al. (JoC '16). Moreover, from our Gentry-IBE variant, we propose an accountable-authority IBE scheme also from SXDH, surpassing the fully secure Sahai-Seyalioglu scheme (PKC '11) in efficiency and the generic Kiayias-Tang transform (ESORICS '15) in security. Collectively, we present a suite of results under static assumptions. </p>
2021
PKC
Compact Zero-Knowledge Proofs for Threshold ECDSA with Trustless Setup 📺
Tsz Hon Yuen Handong Cui Xiang Xie
Threshold ECDSA signatures provide a higher level of security to a crypto wallet since it requires more than t parties out of n parties to sign a transaction. The state-of-the-art bandwidth efficient threshold ECDSA used the additive homomorphic Castagnos and Laguillaumie (CL) encryption based on an unknown order group G, together with a number of zero-knowledge proofs in G. In this paper, we propose compact zero-knowledge proofs for threshold ECDSA to lower the communication bandwidth, as well as the computation cost. The proposed zero-knowledge proofs include the discrete-logarithm relation in G and the well-formedness of a CL ciphertext. When applied to two-party ECDSA, we can lower the bandwidth of the key generation algorithm by 47%, and the running time for the key generation and signing algorithms are boosted by about 35% and 104% respectively. When applied to threshold ECDSA, our first scheme is more optimized for the key generation algorithm (about 70% lower bandwidth and 70% faster computation in key generation, at a cost of 20% larger bandwidth in signing), while our second scheme has an all-rounded performance improvement (about 60% lower bandwidth, 27% faster computation in key generation without additional cost in signing).
2021
CRYPTO
DualRing: Generic Construction of Ring Signatures with Efficient Instantiations 📺
We introduce a novel generic ring signature construction, called DualRing, which can be built from several canonical identification schemes (such as Schnorr identification). DualRing differs from the classical ring signatures by its formation of two rings: a ring of commitments and a ring of challenges. It has a structural difference from the common ring signature approaches based on accumulators or zero-knowledge proofs of the signer index. Comparatively, DualRing has a number of unique advantages. Considering the DL-based setting by using Schnorr identification scheme, our DualRing structure allows the signature size to be compressed into logarithmic size via an argument of knowledge system such as Bulletproofs. We further improve on the Bulletproofs argument system to eliminate about half of the computation while maintaining the same proof size. We call this Sum Argument and it can be of independent interest. This DL-based construction, named DualRing-EC, using Schnorr identification with Sum Argument has the shortest ring signature size in the literature without using trusted setup. Considering the lattice-based setting, we instantiate DualRing by a canonical identification based on M-LWE and M-SIS. In practice, we achieve the shortest lattice-based ring signature, named DualRing-LB, when the ring size is between 4 and 2000. DualRing-LB is also 5x faster in signing and verification than the fastest lattice-based scheme by Esgin et al. (CRYPTO'19).
2015
PKC
2012
EUROCRYPT