CryptoDB
Bao Li
Publications
Year
Venue
Title
2020
EUROCRYPT
Double-Base Chains for Scalar Multiplications on Elliptic Curves
📺
Abstract
Double-base chains (DBCs) are widely used to speed up scalar multiplications on elliptic curves. We present three results of DBCs. First, we display a structure of the set containing all DBCs and propose an iterative algorithm to compute the number of DBCs for a positive integer. This is the first polynomial time algorithm to compute the number of DBCs for positive integers. Secondly, we present an asymptotic lower bound on average Hamming weights of DBCs $\frac{\log n}{8.25}$ for a positive integer $n$. This result answers an open question about the Hamming weights of DBCs. Thirdly, we propose a new algorithm to generate an optimal DBC for any positive integer. The time complexity of this algorithm is $\mathcal{O}\left(\left(\log n\right)^2 \log\log n\right)$ bit operations and the space complexity is $\mathcal{O}\left(\left(\log n\right)^{2}\right)$ bits of memory. This algorithm accelerates the recoding procedure by more than $6$ times compared to the state-of-the-art Bernstein, Chuengsatiansup, and Lange's work. The Hamming weights of optimal DBCs are over $60$\% smaller than those of NAFs. Experimental results show that scalar multiplication using our optimal DBC is about $13$\% faster than that using non-adjacent form on elliptic curves over large prime fields.
2018
ASIACRYPT
Understanding and Constructing AKE via Double-Key Key Encapsulation Mechanism
Abstract
Motivated by abstracting the common idea behind several implicitly authenticated key exchange (AKE) protocols, we introduce a primitive that we call double-key key encapsulation mechanism (2-key KEM). It is a special type of KEM involving two pairs of secret-public keys and satisfying some function and security property. Such 2-key KEM serves as the core building block and provides alternative approaches to simplify the constructions of AKE. To see the usefulness of 2-key KEM, we show how several existing constructions of AKE can be captured as 2-key KEM and understood in a unified framework, including widely used HMQV, NAXOS, Okamoto-AKE, and FSXY12-13 schemes. Then, we show (1) how to construct 2-key KEM from concrete assumptions, (2) how to adapt the classical Fujisaki-Okamoto transformation and KEM combiner to achieve the security requirement of 2-key KEM, (3) an elegant Kyber-AKE over lattice using the improved Fujisaki-Okamoto technique.
Coauthors
- Jingnan He (1)
- Dingding Jia (2)
- Bao Li (4)
- Bei Liang (1)
- Xianhui Lu (3)
- Qixiang Mei (1)
- Saud Al Musa (1)
- Haiyang Xue (1)
- Wei Yu (1)