International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Benjamin Smith

Publications

Year
Venue
Title
2022
RWC
Quantum-Resistant Security for Software Updates on Low-power Networked embedded Devices
As the Internet of Things (IoT) rolls out today to devices whose lifetime may well exceed a decade, conservative threat models should consider attackers with access to quantum computing power.The IETF SUIT standard defines a security architecture for IoT software updates, standardizing metadata and cryptographic tools---namely, digital signatures and hash functions---to guarantee the legitimacy of software updates. SUIT's performance has previously been evaluated in pre-quantum contexts, but not in a post-quantum context. Taking the open-source implementation of SUIT available in RIOT as a case study, we survey post-quantum considerations, focusing on low-power, microcontroller-based IoT devices with stringent constraints on memory, CPU, and energy consumption. We benchmark a selection of proposed post-quantum signature schemes (LMS, Falcon, and Dilithium) and compare them with current pre-quantum signature schemes (Ed25519 and ECDSA) on a variety of IoT hardware including ARM Cortex-M, RISC-V, and Espressif (ESP32), which form the bulk of modern 32-bit microcontroller architectures. Interpreting the results in the context of SUIT, we estimate the real-world impact of post-quantum alternatives for a range of typical software update categories.
2021
TCHES
CTIDH: faster constant-time CSIDH 📺
This paper introduces a new key space for CSIDH and a new algorithm for constant-time evaluation of the CSIDH group action. The key space is not useful with previous algorithms, and the algorithm is not useful with previous key spaces, but combining the new key space with the new algorithm produces speed records for constant-time CSIDH. For example, for CSIDH-512 with a 256-bit key space, the best previous constant-time results used 789000 multiplications and more than 200 million Skylake cycles; this paper uses 438006 multiplications and 125.53 million cycles.
2018
ASIACRYPT
Towards Practical Key Exchange from Ordinary Isogeny Graphs
Luca De Feo Jean Kieffer Benjamin Smith
We revisit the ordinary isogeny-graph based cryptosystems of Couveignes and Rostovtsev–Stolbunov, long dismissed as impractical. We give algorithmic improvements that accelerate key exchange in this framework, and explore the problem of generating suitable system parameters for contemporary pre- and post-quantum security that take advantage of these new algorithms. We also prove the session-key security of this key exchange in the Canetti–Krawczyk model, and the IND-CPA security of the related public-key encryption scheme, under reasonable assumptions on the hardness of computing isogeny walks. Our systems admit efficient key-validation techniques that yield CCA-secure encryption, thus providing an important step towards efficient post-quantum non-interactive key exchange (NIKE).
2017
ASIACRYPT
2016
CHES
2016
JOFC
2014
EUROCRYPT
2013
ASIACRYPT
2011
ASIACRYPT
2009
JOFC
2008
EUROCRYPT

Service

Crypto 2025 Program committee
CiC 2024 Editor
Crypto 2023 Program committee