CryptoDB
Jiangtao Li
Publications
Year
Venue
Title
2024
EUROCRYPT
Registered Functional Encryptions from Pairings
Abstract
This work initiates the study of \emph{concrete} registered functional encryption (Reg-FE) beyond ``all-or-nothing'' functionalities:
- We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairing. The scheme achieves adaptive IND-security under $k$-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from $k$-Lin assumption. Prior work achieves the same security in the generic group model.
- We build the first Reg-FE for quadratic function (Reg-QFE) from pairing. The scheme achieves \emph{very selective} simulation-based security (SIM-security) under bilateral $k$-Lin assumption in the prime-order bilinear group. Here, ``very selective'' means that the adversary claims challenge messages, all quadratic functions to be registered and all corrupted users at the beginning.
Besides focusing on the compactness of the master public key and helper keys, we also aim for compact ciphertexts in Reg-FE. Let $L$ be the number of slots and $n$ be the input size. Our first Reg-IPFE has \emph{weakly compact} ciphertexts of size $O(n\cdot\log L)$ while our second Reg-QFE has \emph{compact} ciphertexts of size $O(n+\log L)$. Technically, for our first Reg-IPFE, we employ \emph{nested} dual-system method within the context of Reg-IPFE; for our second Reg-QFE, we follow Wee's ``IPFE-to-QFE'' transformation [TCC' 20] but devise a set of new techniques that make our \emph{pairing-based} Reg-IPFE compatible. Along the way, we introduce a new notion named \emph{Pre-Constrained Registered IPFE} which generalizes slotted Reg-IPFE by constraining the form of functions that can be registered.
Coauthors
- Junqing Gong (1)
- Jiangtao Li (1)
- Haifeng Qian (1)
- Kai Zhang (1)
- Ziqi Zhu (1)