International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ilan Orlov

Publications

Year
Venue
Title
2020
JOFC
${\varvec{1/p}}$-Secure Multiparty Computation without an Honest Majority and the Best of Both Worlds
A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more harm than in an ideal computation, where parties give their inputs to a trusted party that returns the output of the functionality to all parties. In particular, in the ideal model, such computation is fair—if the corrupted parties get the output, then the honest parties get the output. Cleve (STOC 1986) proved that, in general, fairness is not possible without an honest majority. To overcome this impossibility, Gordon and Katz (Eurocrypt 2010) suggested a relaxed definition—1/ p -secure computation—which guarantees partial fairness. For two parties, they constructed 1/ p -secure protocols for functionalities for which the size of either their domain or their range is polynomial (in the security parameter). Gordon and Katz ask whether their results can be extended to multiparty protocols. We study 1/ p -secure protocols in the multiparty setting for general functionalities. Our main result is constructions of 1/ p -secure protocols that are resilient against any number of corrupted parties provided that the number of parties is constant and the size of the range of the functionality is at most polynomial (in the security parameter $${n}$$ n ). If fewer than 2/3 of the parties are corrupted, the size of the domain of each party is constant, and the functionality is deterministic, then our protocols are efficient even when the number of parties is $$\log \log {n}$$ log log n . On the negative side, we show that when the number of parties is super-constant, 1/ p -secure protocols are not possible when the size of the domain of each party is polynomial. Thus, our feasibility results for 1/ p -secure computation are essentially tight. We further motivate our results by constructing protocols with stronger guarantees: If in the execution of the protocol there is a majority of honest parties, then our protocols provide full security. However, if only a minority of the parties are honest, then our protocols are 1/ p -secure. Thus, our protocols provide the best of both worlds, where the 1/ p -security is only a fall-back option if there is no honest majority.
2019
CRYPTO
Simple Proofs of Space-Time and Rational Proofs of Storage 📺
Tal Moran Ilan Orlov
We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple, practical protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a “space-time” resource (storing data—space—over a period of time). Formally, we define the PoST resource as a trade-off between CPU work and space-time (under reasonable cost assumptions, a rational user will prefer to use the lower-cost space-time resource over CPU work).Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending the time period over which data is stored without increasing computation costs. Our definition is very similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-standard assumptions (beyond random oracles). Unlike previous constructions, our protocol allows incremental difficulty adjustment, which can gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-currency context, the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to the difficulty adjustment for PoW protocols.
2015
JOFC
2015
TCC
2011
CRYPTO
2010
CRYPTO
2009
TCC