CryptoDB
Bin Zhang
Publications
Year
Venue
Title
2023
TOSC
Improved Fast Correlation Attacks on the Sosemanuk Stream Cipher
Abstract
In this paper, we present a new algorithm for fast correlation attacks on stream ciphers with improved cryptanalysis results on the Sosemanuk stream cipher, one of the 7 finalists in the eSTREAM project in 2008. The new algorithm exploits the direct sum construction of covering codes in decoding phase which approximates the random vectors to a nearest codeword in a linear code. The new strategy provides large flexibility for the adversary and could reduce the time/memory/data complexities significantly. As a case study, we carefully revisit Sosemanuk and demonstrate a state recovery attack with a time complexity of 2134.8, which is 220 times faster than achievable before by the same kind of attack and is the fastest one among all known attacks so far. Our result indicates an inefficiency in longer keys than 135 bits and depicts that the security margin of Sosemanuk is around 28 for the 128-bit security for the first time.
2022
TOSC
Vectorial Decoding Algorithm for Fast Correlation Attack and Its Applications to Stream Cipher Grain-128a
Abstract
Fast correlation attack, pioneered by Meier and Staffelbach, is an important cryptanalysis tool for LFSR-based stream cipher, which exploits the correlation between the LFSR state and key stream and targets at recovering the initial state of LFSR via a decoding algorithm. In this paper, we develop a vectorial decoding algorithm for fast correlation attack, which is a natural generalization of the original binary approach. Our approach benefits from the contributions of all correlations in a subspace. We propose two novel criteria to improve the iterative decoding algorithm. We also give some cryptographic properties of the new FCA which allows us to estimate the efficiency and complexity bounds. Furthermore, we apply this technique to the well-analyzed stream cipher Grain-128a. Based on a hypothesis, an interesting result for its security bound is deduced from the perspective of iterative decoding. Our analysis reveals the potential vulnerability for LFSRs over matrix ring and also for nonlinear functions with biased multidimensional linear approximations such as Grain-128a.
2021
TOSC
Resistance of SNOW-V against Fast Correlation Attacks
📺
Abstract
SNOW-V is a new member in the SNOW family of stream ciphers, hoping to be competitive in the 5G mobile communication system. In this paper, we study the resistance of SNOW-V against bitwise fast correlation attacks by constructing bitwise linear approximations. First, we propose and summarize some efficient algorithms using the slice-like techniques to compute the bitwise linear approximations of certain types of composition functions composed of basic operations like ⊞, ⊕, Permutation, and S-box, which have been widely used in word-oriented stream ciphers such as SNOW-like ciphers. Then, using these algorithms, we find a number of stronger linear approximations for the FSM of the two variants of SNOW-V given in the design document, i.e., SNOW-V σ0 and SNOW-V⊞8, ⊞8. For SNOW-V σ0, where there is no byte-wise permutation, we find some bitwise linear approximations of the FSM with the SEI (Squared Euclidean Imbalance) around 2−37.34 and mount a bitwise fast correlation attack with the time complexity 2251.93 and memory complexity 2244, given 2103.83 keystream outputs, which improves greatly the results in the design document. For SNOW-V⊞8, ⊞8, where both of the two 32-bit adders in the FSM are replaced by 8-bit adders, we find our best bitwise linear approximations of the FSM with the SEI 2−174.14, while the best byte-wise linear approximation in the design document of SNOW-V has the SEI 2−214.80. Finally, we study the security of a closer variant of SNOW-V, denoted by SNOW-V⊞32, ⊞8, where only the 32-bit adder used for updating the first register is replaced by the 8-bit adder, while everything else remains identical. For SNOW-V⊞32, ⊞8, we derive many mask tuples yielding the bitwise linear approximations of the FSM with the SEI larger than 2−184. Using these linear approximations, we mount a fast correlation attack with the time complexity 2377.01 and a memory complexity 2363, given 2253.73 keystream outputs. Note that neither of our attack threatens the security of SNOW-V. We hope our research could further help in understanding bitwise linear approximation attacks and also the structure of SNOW-like stream ciphers.
2021
TOSC
Comparing Large-unit and Bitwise Linear Approximations of SNOW 2.0 and SNOW 3G and Related Attacks
📺
Abstract
In this paper, we study and compare the byte-wise and bitwise linear approximations of SNOW 2.0 and SNOW 3G, and present a fast correlation attack on SNOW 3G by using our newly found bitwise linear approximations. On one side, we reconsider the relation between the large-unit linear approximation and the smallerunit/ bitwise ones derived from the large-unit one, showing that approximations on large-unit alphabets have advantages over all the smaller-unit/bitwise ones in linear attacks. But then on the other side, by comparing the byte-wise and bitwise linear approximations of SNOW 2.0 and SNOW 3G respectively, we have found many concrete examples of 8-bit linear approximations whose certain 1-dimensional/bitwise linear approximations have almost the same SEI (Squared Euclidean Imbalance) as that of the original 8-bit ones. That is, each of these byte-wise linear approximations is dominated by a single bitwise approximation, and thus the whole SEI is not essentially larger than the SEI of the dominating single bitwise approximation. Since correlation attacks can be more efficiently implemented using bitwise approximations rather than large-unit approximations, improvements over the large-unit linear approximation attacks are possible for SNOW 2.0 and SNOW 3G. For SNOW 3G, we make a careful search of the bitwise masks for the linear approximations of the FSM and obtain many mask tuples which yield high correlations. By using these bitwise linear approximations, we mount a fast correlation attack to recover the initial state of the LFSR with the time/memory/data/pre-computation complexities all upper bounded by 2174.16, improving slightly the previous best one which used an 8-bit (vectorized) linear approximation in a correlation attack with all the complexities upper bounded by 2176.56. Though not a significant improvement, our research results illustrate that we have an opportunity to achieve improvement over the large-unit attacks by using bitwise linear approximations in a linear approximation attack, and provide a newinsight on the relation between large-unit and bitwise linear approximations.
2021
TOSC
Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives
📺
Abstract
Energy efficiency is critical in battery-driven devices, and designing energyoptimal symmetric-key ciphers is one of the goals for the use of ciphers in such environments. In the paper by Banik et al. (IACR ToSC 2018), stream ciphers were identified as ideal candidates for low-energy solutions. One of the main conclusions of this paper was that Trivium, when implemented in an unrolled fashion, was by far the most energy-efficient way of encrypting larger quantity of data. In fact, it was shown that as soon as the number of databits to be encrypted exceeded 320 bits, Trivium consumed the least amount of energy on STM 90 nm ASIC circuits and outperformed the Midori family of block ciphers even in the least energy hungry ECB mode (Midori was designed specifically for energy efficiency).In this work, we devise the first heuristic energy model in the realm of stream ciphers that links the underlying algebraic topology of the state update function to the consumptive behaviour. The model is then used to derive a metric that exhibits a heavy negative correlation with the energy consumption of a broad range of stream cipher architectures, i.e., the families of Trivium-like, Grain-like and Subterranean-like constructions. We demonstrate that this correlation is especially pronounced for Trivium-like ciphers which leads us to establish a link between the energy consumption and the security guarantees that makes it possible to find several alternative energy-optimal versions of Trivium that meet the requirements but consume less energy. We present two such designs Trivium-LE(F) and Trivium-LE(S) that consume around 15% and 25% less energy respectively making them the to date most energy-efficient encryption primitives. They inherit the same security level as Trivium, i.e., 80-bit security. We further present Triad-LE as an energy-efficient variant satisfying a higher security level. The simplicity and wide applicability of our model has direct consequences for the conception of future hardware-targeted stream ciphers as for the first time it is possible to optimize for energy during the design phase. Moreover, we extend the reach of our model beyond plain encryption primitives and propose a novel energy-efficient message authentication code Trivium-LE-MAC.
2019
ASIACRYPT
Cryptanalysis of GSM Encryption in 2G/3G Networks Without Rainbow Tables
Abstract
The GSM standard developed by ETSI for 2G networks adopts the A5/1 stream cipher to protect the over-the-air privacy in cell phone and has become the de-facto global standard in mobile communications, though the emerging of subsequent 3G/4G standards. There are many cryptanalytic results available so far and the most notable ones share the need of a heavy pre-computation with large rainbow tables or distributed cracking network. In this paper, we present a fast near collision attack on GSM encryption in 2G/3G networks, which is completely new and more threatening compared to the previous best results. We adapt the fast near collision attack proposed at Eurocrypt 2018 with the concrete irregular clocking manner in A5/1 to have a state recovery attack with a low complexity. It is shown that if the first 64 bits of one keystream frame are available, the secret key of A5/1 can be reliably found in $$2^{31.79}$$ cipher ticks, given around 1 MB memory and after the pre-computation of $$2^{20.26}$$ cipher ticks. Our current implementation clearly certified the validity of the suggested attack. Due to the fact that A5/3 and GPRS share the same key with A5/1, this can be converted into attacks against any GSM network eventually.
2018
CRYPTO
Fast Correlation Attack Revisited
📺
Abstract
A fast correlation attack (FCA) is a well-known cryptanalysis technique for LFSR-based stream ciphers. The correlation between the initial state of an LFSR and corresponding key stream is exploited, and the goal is to recover the initial state of the LFSR. In this paper, we revisit the FCA from a new point of view based on a finite field, and it brings a new property for the FCA when there are multiple linear approximations. Moreover, we propose a novel algorithm based on the new property, which enables us to reduce both time and data complexities. We finally apply this technique to the Grain family, which is a well-analyzed class of stream ciphers. There are three stream ciphers, Grain-128a, Grain-128, and Grain-v1 in the Grain family, and Grain-v1 is in the eSTREAM portfolio and Grain-128a is standardized by ISO/IEC. As a result, we break them all, and especially for Grain-128a, the cryptanalysis on its full version is reported for the first time.
2017
TOSC
Fast Correlation Attacks on Grain-like Small State Stream Ciphers
Abstract
In this paper, we study the security of Grain-like small state stream ciphers by fast correlation attacks, which are commonly regarded as classical cryptanalytic methods against LFSR-based stream ciphers. We extend the cascaded structure adopted in such primitives in general and show how to restore the full internal state part-by-part if the non-linear combining function meets some characteristic. As a case study, we present a key recovery attack against Fruit, a tweaked version of Sprout that employs key-dependent state updating in the keystream generation phase. Our attack requires 262.8 Fruit encryptions and 222.3 keystream bits to determine the 80-bit secret key. Practical simulations on a small-scale version confirmed our results.
2013
CRYPTO
Program Committees
- Crypto 2024
Coauthors
- Kazumaro Aoki (1)
- Subhadeep Banik (1)
- Andrea Caforio (1)
- Junfeng Fan (1)
- Dengguo Feng (5)
- Xinxin Gong (5)
- Takanori Isobe (2)
- Lin Jiao (2)
- Zhenqi Li (2)
- Dongdai Lin (1)
- Ruitao Liu (1)
- Fukang Liu (1)
- Willi Meier (5)
- Yosuke Todo (2)
- Ingrid Verbauwhede (1)
- Mingsheng Wang (1)
- Chao Xu (4)
- Bin Zhang (17)
- Zhaocun Zhou (1)