International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Malika Izabachène

Publications

Year
Venue
Title
2024
CIC
Efficient Post-Quantum Pattern Matching on Encrypted Data
Anis Bkakria Malika Izabachène
<p>Pattern matching methods are essential in various applications where users must disclose highly sensitive information. Among these applications are genomic data analysis, financial records inspection, and intrusion detection processes, all of which necessitate robust privacy protection mechanisms. Balancing the imperative of protecting the confidentiality of analyzed data with the need for efficient pattern matching presents a significant challenge.</p><p>In this paper, we propose an efficient post-quantum secure construction that enables arbitrary pattern matching over encrypted data while ensuring the confidentiality of the data to be analyzed. In addition, we address scenarios where a malicious data sender, intended to send an encrypted content for pattern detection analysis, has the ability to modify the encrypted content. We adapt the data fragmentation technique to handle such a malicious sender. Our construction makes use of a well-suited Homomorphic Encryption packing method in the context of fragmented streams and combines homomorphic operations in a leveled mode (i.e. without bootstrapping) to obtain a very efficient pattern matching detection process.</p><p>In contrast to the most efficient state-of-the-art scheme, our construction achieves a significant reduction in the time required for encryption, decryption, and pattern matching on encrypted data. Specifically, our approach decreases the time by factors of $1850$, $10^6$, and $245$, respectively, for matching a single pattern, and by factors of $115$, $10^5$, and $12$, respectively, for matching $2^{10}$ patterns. </p>
2019
JOFC
TFHE: Fast Fully Homomorphic Encryption Over the Torus
This work describes a fast fully homomorphic encryption scheme over the torus (TFHE) that revisits, generalizes and improves the fully homomorphic encryption (FHE) based on GSW and its ring variants. The simplest FHE schemes consist in bootstrapped binary gates. In this gate bootstrapping mode, we show that the scheme FHEW of Ducas and Micciancio (Eurocrypt, 2015) can be expressed only in terms of external product between a GSW and an LWE ciphertext. As a consequence of this result and of other optimizations, we decrease the running time of their bootstrapping from 690 to 13 ms single core, using 16 MB bootstrapping key instead of 1 GB, and preserving the security parameter. In leveled homomorphic mode, we propose two methods to manipulate packed data, in order to decrease the ciphertext expansion and to optimize the evaluation of lookup tables and arbitrary functions in $${\mathrm {RingGSW}}$$RingGSW-based homomorphic schemes. We also extend the automata logic, introduced in Gama et al. (Eurocrypt, 2016), to the efficient leveled evaluation of weighted automata, and present a new homomorphic counter called $$\mathrm {TBSR}$$TBSR, that supports all the elementary operations that occur in a multiplication. These improvements speed up the evaluation of most arithmetic functions in a packed leveled mode, with a noise overhead that remains additive. We finally present a new circuit bootstrapping that converts $$\mathsf {LWE}$$LWE ciphertexts into low-noise $${\mathrm {RingGSW}}$$RingGSW ciphertexts in just 137 ms, which makes the leveled mode of TFHE composable and which is fast enough to speed up arithmetic functions, compared to the gate bootstrapping approach. Finally, we provide an alternative practical analysis of LWE based schemes, which directly relates the security parameter to the error rate of LWE and the entropy of the LWE secret key, and we propose concrete parameter sets and timing comparison for all our constructions.
2017
ASIACRYPT
2016
EUROCRYPT
2016
ASIACRYPT