CryptoDB
Michael Hartmann
Publications
Year
Venue
Title
2020
CRYPTO
Shorter Non-Interactive Zero-Knowledge Arguments and ZAPs for Algebraic Languages
📺
Abstract
We put forth a new framework for building pairing-based non-interactive
zero-knowledge (NIZK) arguments for a wide class of algebraic languages,
which are an extension of linear languages, containing disjunctions of linear
languages and more. Our approach differs from the Groth-Sahai methodology, in
that we rely on pairings to compile a Sigma-protocol into a NIZK. Our framework enjoys
a number of interesting features:
- conceptual simplicity, parameters derive from the Sigma-protocol;
- proofs as short as resulting from the Fiat-Shamir heuristic applied to the underlying
Sigma-protocol;
- fully adaptive soundness and perfect zero-knowledge in the common random
string model with a single random group element as CRS;
- yields simple and efficient two-round, public coin, publicly-verifiable perfect witness-
indistinguishable (WI) arguments(ZAPs) in the plain model. To our knowledge, this is the first
construction of two-rounds statistical witness-indistinguishable arguments from pairing
assumptions.
Our proof system relies on a new (static, falsifiable) assumption over pairing
groups which generalizes the standard kernel Diffie-Hellman assumption in a
natural way and holds in the generic group model (GGM) and in the algebraic
group model (AGM).
Replacing Groth-Sahai \NIZKs with our new proof system allows to improve several important cryptographic primitives. In particular, we obtain the shortest tightly-secure structure-preserving signature scheme (which are a core component in anonymous credentials), the shortest tightly-secure quasi-adaptive \NIZK with unbounded simulation soundness (which in turns implies the shortest tightly-mCCA-secure cryptosystem), and shorter ring signatures.
Coauthors
- Geoffroy Couteau (1)
- Michael Hartmann (2)
- Sachar Paulus (1)
- Tsuyoshi Takagi (1)