CryptoDB
Cristina Onete
Publications
Year
Venue
Title
2018
ASIACRYPT
Pattern Matching on Encrypted Streams
Abstract
Pattern matching is essential in applications such as deep-packet inspection (DPI), searching on genomic data, or analyzing medical data. A simple task to do on plaintext data, pattern matching is much harder to do when the privacy of the data must be preserved. Existent solutions involve searchable encryption mechanisms with at least one of these three drawbacks: requiring an exhaustive (and static) list of keywords to be prepared before the data is encrypted (like in symmetric searchable encryption); requiring tokenization, i.e., breaking up the data to search into substrings and encrypting them separately (e.g., like BlindBox); relying on symmetric-key cryptography, thus implying a token-regeneration step for each encrypted-data source (e.g., user). Such approaches are ill-suited for pattern-matching with evolving patterns (e.g., updating virus signatures), variable searchword lengths, or when a single entity must filter ciphertexts from multiple parties.In this work, we introduce Searchable Encryption with Shiftable Trapdoors (SEST): a new primitive that allows for pattern matching with universal tokens (usable by all entities), in which keywords of arbitrary lengths can be matched to arbitrary ciphertexts. Our solution uses public-key encryption and bilinear pairings.In addition, very minor modifications to our solution enable it to take into account regular expressions, such as fully- or partly-unknown characters in a keyword (wildcards and interval/subset searches). Our trapdoor size is at most linear in the keyword length (and independent of the plaintext size), and we prove that the leakage to the searcher is only the trivial one: since the searcher learns whether the pattern occurs and where, it can distinguish based on different search results of a single trapdoor on two different plaintexts.To better show the usability of our scheme, we implemented it to run DPI on all the SNORT rules. We show that even for very large plaintexts, our encryption algorithm scales well. The pattern-matching algorithm is slower, but extremely parallelizable, and it can thus be run even on very large data. Although our proofs use a (marginally) interactive assumption, we argue that this is a relatively small price to pay for the flexibility and privacy that we are able to attain.
Program Committees
- PKC 2021
Coauthors
- Nicolas Desmoulins (1)
- Pierre-Alain Fouque (1)
- Cristina Onete (1)
- Olivier Sanders (1)