International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Cécile Pierrot

Publications

Year
Venue
Title
2024
CIC
Discrete Logarithm Factory
<p>The Number Field Sieve and its variants are the best algorithms to solve the discrete logarithm problem in finite fields (except for the weak small characteristic case). The Factory variant accelerates the computation when several prime fields are targeted. This article adapts the Factory variant to non-prime finite fields of medium and large characteristic. A precomputation, solely dependent on an approximate finite field size and an extension degree, allows to efficiently compute discrete logarithms in a constant proportion of the finite fields of the given approximate size and extension degree. We combine this idea with two other variants of NFS, namely the tower and special variant. This combination improves the asymptotic complexity. We also notice that combining our approach with the MNFS variant would be an unnecessary complication as all the potential gain of MNFS is subsumed by our Factory variant anyway. Furthermore, we demonstrate how Chebotarev's density theorem allows to compute the density of finite fields that can be solved with a given precomputation. Finally, we provide experimental data in order to assess the practical reach of our approach. </p>
2023
JOFC
Lattice Enumeration and Automorphisms for Tower NFS: A 521-Bit Discrete Logarithm Computation
The tower variant of the number field sieve (TNFS) is known to be asymptotically the most efficient algorithm to solve the discrete logarithm problem in finite fields of medium characteristics, when the extension degree is composite. A major obstacle to an efficient implementation of TNFS is the collection of algebraic relations, as it happens in dimension greater than 2. This requires the construction of new sieving algorithms which remain efficient as the dimension grows. In this article, we overcome this difficulty by considering a lattice enumeration algorithm which we adapt to this specific context. We also consider a new sieving area, a high-dimensional sphere, whereas previous sieving algorithms for the classical NFS considered an orthotope. Our new sieving technique leads to a much smaller running time, despite the larger dimension of the search space, and even when considering a larger target, as demonstrated by a record computation we performed in a 521-bit finite field  $${{{\mathbb {F}}}}_{p^6}$$ F p 6 . The target finite field is of the same form as finite fields used in recent zero-knowledge proofs in some blockchains. This is the first reported implementation of TNFS.
2021
ASIACRYPT
Lattice Enumeration for Tower NFS: a 521-bit Discrete Logarithm Computation 📺
The Tower variant of the Number Field Sieve (TNFS) is known to be asymptotically the most efficient algorithm to solve the discrete logarithm problem in finite fields of medium characteristics, when the extension degree is composite. A major obstacle to an efficient implementation of TNFS is the collection of algebraic relations, as it happens in dimension greater than 2. This requires the construction of new sieving algorithms which remain efficient as the dimension grows. In this article, we overcome this difficulty by considering a lattice enumeration algorithm which we adapt to this specific context. We also consider a new sieving area, a high-dimensional sphere, whereas previous sieving algorithms for the classical NFS considered an orthotope. Our new sieving technique leads to a much smaller running time, despite the larger dimension of the search space, and even when considering a larger target, as demonstrated by a record computation we performed in a 521-bit finite field GF(p^6). The target finite field is of the same form than finite fields used in recent zero-knowledge proofs in some blockchains. This is the first reported implementation of TNFS.
2020
CRYPTO
Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields 📺
We study the discrete logarithm problem at the boundary case between small and medium characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryptosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt the latter to the particular case where the extension degree is composite, and show how to lower the complexity by working in a shifted function field. All this study finally allows us to give precise values for the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough, there exist special characteristics that are as secure as general ones.
2015
EUROCRYPT
2014
ASIACRYPT

Program Committees

Asiacrypt 2022
Eurocrypt 2020