CryptoDB
Yonglin Hao
Publications
Year
Venue
Title
2023
CRYPTO
Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications
Abstract
Zero-knowledge (ZK) applications form a large group of use cases in modern cryptography, and recently gained in popularity due to novel proof systems. For many of these applications, cryptographic hash functions are used as the main building blocks, and they often dominate the overall performance and cost of these approaches.
Therefore, in the last years several new hash functions were built in order to reduce the cost in these scenarios, including Poseidon and Rescue among others. These hash functions often look very different from more classical designs such as AES or SHA-2. For example, they work natively over prime fields rather than binary ones. At the same time, for example Poseidon and Rescue share some common features, such as being SPN schemes and instantiating the nonlinear layer with invertible power maps. While this allows the designers to provide simple and strong arguments for establishing their security, it also introduces crucial limitations in the design, which may affect the performance in the target applications.
In this paper, we propose the Horst construction, in which the addition in a Feistel scheme (x, y) -> (y + F(x), x) is extended via a multiplication, i.e., (x, y) -> (y * G(x) + F(x), x).
By carefully analyzing the performance metrics in SNARK and STARK protocols, we show how to combine an expanding Horst scheme with a Rescue-like SPN scheme in order to provide security and better efficiency in the target applications. We provide an extensive security analysis for our new design Griffin and a comparison with all current competitors.
2021
JOFC
Modeling for Three-Subset Division Property without Unknown Subset
Abstract
A division property is a generic tool to search for integral distinguishers, and automatic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently. In the application to stream ciphers, it enables us to estimate the security of cube attacks theoretically, and it leads to the best key-recovery attacks against well-known stream ciphers. However, it was reported that some of the key-recovery attacks based on the division property degenerate to distinguishing attacks due to the inaccuracy of the division property. Three-subset division property (without unknown subset) is a promising method to solve this inaccuracy problem, and a new algorithm using automatic tools for the three-subset division property was recently proposed at Asiacrypt2019. In this paper, we first show that this state-of-the-art algorithm is not always efficient and we cannot improve the existing key-recovery attacks. Then, we focus on the three-subset division property without unknown subset and propose another new efficient algorithm using automatic tools. Our algorithm is more efficient than existing algorithms, and it can improve existing key-recovery attacks. In the application to Trivium , we show a 842-round key-recovery attack. We also show that a 855-round key-recovery attack, which was proposed at CRYPTO2018, has a critical flaw and does not work. As a result, our 842-round attack becomes the best key-recovery attack. In the application to Grain-128AEAD, we show that the known 184-round key-recovery attack degenerates to a distinguishing attack. Then, the distinguishing attacks are improved up to 189 rounds, and we also show the best key-recovery attack against 190 rounds. In the application to ACORN , we prove that the 772-round key-recovery attack at ISC2019 is in fact a constant-sum distinguisher. We then give new key-recovery attacks mounting to 773-, 774- and 775-round ACORN . We verify the current best key-recovery attack on 892-round Kreyvium and recover the exact superpoly. We further propose a new attack mounting to 893 rounds.
2020
EUROCRYPT
Modeling for Three-Subset Division Property without Unknown Subset -- Improved Cube Attacks against Trivium and Grain-128AEAD
📺
Abstract
A division property is a generic tool to search for integral distinguishers, and automatic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently.
In the application to stream ciphers, it enables us to estimate the security of cube attacks theoretically, and it leads to the best key-recovery attacks against well-known stream ciphers.
However, it was reported that some of the key-recovery attacks based on the division property degenerate to distinguishing attacks due to the inaccuracy of the division property.
Three-subset division property (without unknown subset) is a promising method to solve this inaccuracy problem, and a new algorithm using automatic tools for the three-subset division property was recently proposed at Asiacrypt2019.
In this paper, we first show that this state-of-the-art algorithm is not always efficient and we cannot improve the existing key-recovery attacks.
Then, we focus on the feature of the three-subset division property without unknown subset and propose another new efficient algorithm using automatic tools.
Our algorithm is more efficient than existing algorithms, and it can improve existing key-recovery attacks.
In the application to Trivium, we show a 841-round key-recovery attack.
We also show that a 855-round key-recovery attack, which was proposed at CRYPTO2018, has a critical flaw and does not work.
As a result, our 841-round attack becomes the best key-recovery attack.
In the application to Grain-128AEAD, we show that the known 184-round key-recovery attack degenerates to distinguishing attacks.
Then, the distinguishing attacks are improved up to 189 rounds, and we also show the best key-recovery attack against 190 rounds.
2020
TOSC
Links between Division Property and Other Cube Attack Variants
📺
Abstract
A theoretically reliable key-recovery attack should evaluate not only the non-randomness for the correct key guess but also the randomness for the wrong ones as well. The former has always been the main focus but the absence of the latter can also cause self-contradicted results. In fact, the theoretic discussion of wrong key guesses is overlooked in quite some existing key-recovery attacks, especially the previous cube attack variants based on pure experiments. In this paper, we draw links between the division property and several variants of the cube attack. In addition to the zero-sum property, we further prove that the bias phenomenon, the non-randomness widely utilized in dynamic cube attacks and cube testers, can also be reflected by the division property. Based on such links, we are able to provide several results: Firstly, we give a dynamic cube key-recovery attack on full Grain-128. Compared with Dinur et al.’s original one, this attack is supported by a theoretical analysis of the bias based on a more elaborate assumption. Our attack can recover 3 key bits with a complexity 297.86 and evaluated success probability 99.83%. Thus, the overall complexity for recovering full 128 key bits is 2125. Secondly, now that the bias phenomenon can be efficiently and elaborately evaluated, we further derive new secure bounds for Grain-like primitives (namely Grain-128, Grain-128a, Grain-V1, Plantlet) against both the zero-sum and bias cube testers. Our secure bounds indicate that 256 initialization rounds are not able to guarantee Grain-128 to resist bias-based cube testers. This is an efficient tool for newly designed stream ciphers for determining the number of initialization rounds. Thirdly, we improve Wang et al.’s relaxed term enumeration technique proposed in CRYPTO 2018 and extend their results on Kreyvium and ACORN by 1 and 13 rounds (reaching 892 and 763 rounds) with complexities 2121.19 and 2125.54 respectively. To our knowledge, our results are the current best key-recovery attacks on these two primitives.
2018
CRYPTO
Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly
📺
Abstract
The cube attack is an important technique for the cryptanalysis of symmetric key primitives, especially for stream ciphers. Aiming at recovering some secret key bits, the adversary reconstructs a superpoly with the secret key bits involved, by summing over a set of the plaintexts/IV which is called a cube. Traditional cube attack only exploits linear/quadratic superpolies. Moreover, for a long time after its proposal, the size of the cubes has been largely confined to an experimental range, e.g., typically 40. These limits were first overcome by the division property based cube attacks proposed by Todo et al. at CRYPTO 2017. Based on MILP modelled division property, for a cube (index set) I, they identify the small (index) subset J of the secret key bits involved in the resultant superpoly. During the precomputation phase which dominates the complexity of the cube attacks, $$2^{|I|+|J|}$$2|I|+|J| encryptions are required to recover the superpoly. Therefore, their attacks can only be available when the restriction $$|I|+|J|<n$$|I|+|J|<n is met.In this paper, we introduced several techniques to improve the division property based cube attacks by exploiting various algebraic properties of the superpoly.
1.We propose the “flag” technique to enhance the preciseness of MILP models so that the proper non-cube IV assignments can be identified to obtain a non-constant superpoly.2.A degree evaluation algorithm is presented to upper bound the degree of the superpoly. With the knowledge of its degree, the superpoly can be recovered without constructing its whole truth table. This enables us to explore larger cubes I’s even if $$|I|+|J|\ge n$$|I|+|J|≥n.3.We provide a term enumeration algorithm for finding the monomials of the superpoly, so that the complexity of many attacks can be further reduced.
As an illustration, we apply our techniques to attack the initialization of several ciphers. To be specific, our key recovery attacks have mounted to 839-round Trivium, 891-round Kreyvium, 184-round Grain-128a and 750-round Acornrespectively.
Coauthors
- Lorenzo Grassi (1)
- Yonglin Hao (6)
- Takanori Isobe (2)
- Lin Jiao (1)
- Gregor Leander (2)
- Chaoyun Li (2)
- Willi Meier (5)
- Christian Rechberger (1)
- Markus Schofnegger (1)
- Yosuke Todo (5)
- Roman Walch (1)
- Qingju Wang (5)