CryptoDB
Yang Yu
ORCID: 0000-0003-0120-0648
Publications
Year
Venue
Title
2024
PKC
Cryptanalysis of the Peregrine Lattice-Based Signature Scheme
Abstract
The Peregrine signature scheme is one of the candidates in the ongoing Korean post-quantum cryptography competition. It is proposed as a high-speed variant of Falcon, which is a hash-and-sign signature scheme over NTRU lattices and one of the schemes selected by NIST for standardization. To this end, Peregrine replaces the lattice Gaussian sampler in the Falcon signing procedure with a new sampler based on the centered binomial distribution. While this modification offers significant advantages in terms of efficiency and implementation, it does not come with a provable guarantee that signatures do not leak information about the signing key. Unfortunately, lattice based signature schemes in the hash-and-sign paradigm that lack such a guarantee (such as GGH, NTRUSign or DRS) have generally proved insecure.
In this paper, we show that Peregrine is no exception, by demonstrating a practical key recovery attack against it. We observe that the distribution of Peregrine signatures is a hidden transformation of some public distribution and still leaks information about the signing key. By adapting the parallelepiped-learning technique of Nguyen and Regev (Eurocrypt 2006), we show that the signing key can be recovered from a relatively small number of signatures. The learning technique alone yields an approximate version of the key, from which we can recover the exact key using a decoding technique due to Thomas Prest (PKC 2023).
For the reference implementation (resp. the official specification version) of Peregrine-512, we fully recover the secret key with good probability in a few hours given around 25,000 (resp. 11 million) signature samples.
2023
EUROCRYPT
Improved Power Analysis Attacks on Falcon
Abstract
Falcon is one of the three post-quantum signature schemes selected for standardization by NIST. Due to its low bandwidth and high efficiency, Falcon is seen as an attractive option for quantum-safe embedded systems. In this work, we study Falcon’s side-channel resistance by analysing its Gaussian samplers. Our results are mainly twofold.
The first result is an improved key recovery exploiting the leakage within the base sampler investigated by Guerreau et al. (CHES 2022). Instead of resorting to the fourth moment as in former parallelepiped-learning attacks, we work with the second order statistics covariance and use its spectral decomposition to recover the secret information. Our approach substantially reduces the the requirement of measurements and computation resources: 220 000 traces is sufficient to recover the secret key of Falcon-512 within half an hour with a probability of ≈ 25%. As a comparison, even with 106 traces, the former attack still needs about 1000 hours CPU time of lattice reduction for a full key recovery. In addition, our approach is robust to inaccurate leakage classification, which is another advantage over parallelepiped-learning attacks.
Our second result is a practical power analysis targeting the integer Gaussian sampler of Falcon. The analysis relies on the leakage of random sign flip within the integer Gaussian sampling. This leakage was exposed in 2018 by Kim and Hong, but it is not considered in the Falcon’s implementation and unexploited for side-channel analysis until now. We identify the leakage within the reference implementation of Falcon on an ARM Cortex-M4 STM32F407IGT6 microprocessor. We also show that this single bit of leakage is in effect enough for practical key recovery: with 170 000 traces one can fully recover the key of Falcon-512 within half an hour. Furthermore, combining the sign leakage and the aforementioned leakage, one can recover the key with only 45 000 signature measurements in a short time.
As a by-product, we also extend our power analysis to Mitaka that is a recent variant of Falcon. The same leakages exist within the integer Gaussian samplers of Mitaka, and they can also be used to mount key recovery attacks. Nevertheless, the key recovery in Mitaka requires much more traces than it does in Falcon, due to their different lattice Gaussian samplers.
2023
CRYPTO
Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures
Abstract
Lattice gadgets and the associated algorithms are the essential building blocks of lattice-based cryptography. In the past decade, they have been applied to build versatile and powerful cryptosystems. However, the practical optimizations and designs of gadget-based schemes generally lag their theoretical constructions. For example, the gadget-based signatures have elegant design and capability of extending to more advanced primitives, but they are far less efficient than other lattice-based signatures.
This work aims to improve the practicality of gadget-based cryptosystems, with a focus on hash-and-sign signatures. To this end, we develop a compact gadget framework in which the used gadget is a \emph{square} matrix instead of the short and fat one used in previous constructions. To work with this compact gadget, we devise a specialized gadget sampler, called \emph{semi-random sampler}, to compute the approximate preimage. It first \emph{deterministically} computes the error and then randomly samples the preimage.
We show that for uniformly random targets, the preimage and error distributions are simulatable without knowing the trapdoor. This ensures the security of the signature applications. Compared to the Gaussian-distributed errors in previous algorithms, the deterministic errors have a smaller size, which lead to a substantial gain in security and enables a practically working instantiation.
As the applications, we present two practically efficient gadget-based signature schemes based on NTRU and Ring-LWE respectively. The NTRU-based scheme offers comparable efficiency to Falcon and Mitaka and a simple implementation without the need of generating the NTRU trapdoor. The LWE-based scheme also achieves a desirable overall performance. It not only greatly outperforms the state-of-the-art LWE-based hash-and-sign signatures, but also has an even smaller size than the LWE-based Fiat-Shamir signature scheme Dilithium. These results fill the long-term gap in practical gadget-based signatures.
2023
ASIACRYPT
On Gaussian sampling, smoothing parameter and application to signatures
Abstract
We present a general framework for polynomial-time lattice Gaussian
sampling. It revolves around a systematic study of the discrete
Gaussian measure and its samplers under \emph{extensions} of lattices;
we first show that given lattices $\Lat'\subset \Lat$ we can sample
efficiently in $\Lat$ if we know how to do so in $\Lat'$ and the
quotient $\Lat/\Lat'$, \emph{regardless} of the primitivity of
$\Lat'$. As a direct application, we tackle the problem of domain
extension and restriction for sampling and propose a sampler tailored
for lattice \emph{filtrations}, which can be seen as a broad
generalization of the celebrated Klein's sampler. Then, we demonstrate
how to sample using a change of bases, or even switching the ambient
space, even when the target lattice is not represented as full-rank in
the ambient space. We show how to correct the induced distortion with
the ``convolution-like'' technique of Peikert (Crypto 2010)
(which we encompass as a byproduct). Since our framework aims at
modularity and leverage the combinations of smaller samplers to build
new ones, we also propose ad-hoc samplers for the so-called \emph{root
lattices} $\An_n, \Dn_n, \mathsf{E}_n$ as base cases, extending the
state-of-the-art for root lattice sampling, which was limited to
$\ZZ^n$. We also show how our framework blends with the so-called
$k$ing construction and provides a sampler for the remarkable Leech and
Barnes-Wall lattices.
As a by-product, we obtain novel, quasi-linear samplers
for prime and smooth conductor (as $2^\ell 3^k$) cyclotomic rings,
achieving essentially optimal Gaussian width. In a practice-oriented
application, we showcase the impact of our work on hash-and-sign
signatures over \textsc{ntru} lattices. In the best case, we can gain
around 200 bytes (which corresponds to an improvement greater than
20\%) on the signature size. We also improve the new gadget-based
constructions (Yu, Jia, Wang, Crypto 2023) and gain up to 110 bytes for the
resulting signatures.
Lastly, we sprinkle our exposition with several new estimates for the
smoothing parameter of lattices, stemming from our algorithmic
constructions and by novel methods based on series reversion.
2023
ASIACRYPT
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
Abstract
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood.
In this work, we study the problems on rotations of $\mathbb{Z}^n$ by exploiting the symmetry property. We introduce a randomization framework that can be roughly viewed as `applying random automorphisms’ to the output of an oracle, without accessing the automorphism group. Using this framework, we obtain new reduction results for rotations of $\mathbb{Z}^n$. First, we present a reduction from $\mathbb{Z}$LIP to $\mathbb{Z}$SCVP. Here $\mathbb{Z}$SCVP is the problem of finding the shortest characteristic vectors, which is a special case of CVP where the target vector is a deep hole of the lattice. Moreover, we prove a reduction from $\mathbb{Z}$SVP to $\gamma$-$\mathbb{Z}$SVP for any constant $\gamma = O(1)$ in the same dimension, which implies that $\mathbb{Z}$SVP is as hard as its approximate version for any constant approximation factor. Second, we investigate the problem of finding a nontrivial automorphism for a given lattice, which is called LAP. Specifically, we use the randomization framework to show that $\mathbb{Z}$LAP is as hard as $\mathbb{Z}$LIP. We note that our result can be viewed as a $\mathbb{Z}^n$-analogue of Lenstra and Silverberg's result in [JoC2017], but with a different assumption: they assume the $G$-lattice structure, while we assume the access to an oracle that outputs a nontrivial automorphism.
2022
PKC
Towards a Simpler Lattice Gadget Toolkit
📺
Abstract
As a building block, gadgets and associated algorithms are widely used in advanced lattice cryptosystems. The gadget algorithms for power-of-base moduli are very efficient and simple, however the current algorithms for arbitrary moduli are still complicated and practically more costly despite several efforts. Considering the necessity of arbitrary moduli, developing simpler and more practical gadget algorithms for arbitrary moduli is crucial to improving the practical performance of lattice based applications.
In this work, we propose two new gadget sampling algorithms for arbitrary moduli. Our first algorithm is for gadget Gaussian sampling. It is simple and efficient. One distinguishing feature of our Gaussian sampler is that it does not need floating-point arithmetic, which makes it better compatible with constrained environments. Our second algorithm is for gadget subgaussian sampling. Compared with the existing algorithm, it is simpler, faster, and requires asymptotically less randomness. In addition, our subgaussian sampler achieves an almost equal quality for different practical parameters. Overall these two algorithms provide simpler options for gadget algorithms and enhance the practicality of the gadget toolkit.
2022
EUROCRYPT
Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon
📺
Abstract
This work describes the Mitaka signature scheme: a new hash-and-sign
signature scheme over NTRU lattices which can be seen as a variant of
NIST finalist Falcon. It achieves comparable efficiency but is
considerably simpler, online/offline, and easier to parallelize and
protect against side-channels, thus offering significant advantages from
an implementation standpoint. It is also much more versatile in terms of
parameter selection.
We obtain this signature scheme by replacing the FFO lattice Gaussian
sampler in Falcon by the “hybrid” sampler of Ducas and Prest, for
which we carry out a detailed and corrected security analysis. In
principle, such a change can result in a substantial security loss, but
we show that this loss can be largely mitigated using new techniques in
key generation that allow us to construct much higher quality lattice
trapdoors for the hybrid sampler relatively cheaply. This new approach
can also be instantiated on a wide variety of base fields, in contrast
with Falcon's restriction to power-of-two cyclotomics.
We also introduce a new lattice Gaussian sampler with the same quality
and efficiency, but which is moreover compatible with the integral matrix
Gram root technique of Ducas et al., allowing us to avoid floating point
arithmetic. This makes it possible to realize the same signature
scheme as Mitaka efficiently on platforms with poor support for
floating point numbers.
Finally, we describe a provably secure masking of Mitaka. More precisely,
we introduce novel gadgets that allow provable masking at any order at much
lower cost than previous masking techniques for Gaussian sampling-based
signature schemes, for cheap and dependable side-channel protection.
2022
TCHES
BAT: Small and Fast KEM over NTRU Lattices
Abstract
We present BAT – an IND-CCA secure key encapsulation mechanism (KEM) that is based on NTRU but follows an encryption/decryption paradigm distinct from classical NTRU KEMs. It demonstrates a new approach of decrypting NTRU ciphertext since its introduction 25 years ago. Instead of introducing an artificial masking parameter p to decrypt the ciphertext, we use 2 linear equations in 2 unknowns to recover the message and the error. The encryption process is therefore close to the GGH scheme. However, since the secret key is now a short basis (not a vector), we need to modify the decryption algorithm and we present a new NTRU decoder. Thanks to the improved decoder, our scheme works with a smaller modulus and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit classical security with comparable public-key size and much faster than RSA or even ECC. Meanwhile, the encryption and decryption are still simple and fast in spite of the complicated key generation. Overall, our KEM has more compact parameters than all current lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair structure, BAT can be of special interest in some applications using Falcon signature that is also the most compact signature in the round 3 of the NIST post-quantum cryptography standardization. However, different from Falcon, our KEM does not rely on floating-point arithmetic and can be fully implemented over the integers.
2022
CRYPTO
Shorter Hash-and-Sign Lattice-Based Signatures
📺
Abstract
Lattice-based digital signature schemes following the hash-and-sign design paradigm of Gentry, Peikert and Vaikuntanathan (GPV) tend to offer an attractive level of efficiency, particularly when instantiated with structured compact trapdoors. In particular, NIST postquantum finalist Falcon is both quite fast for signing and verification and quite compact: NIST notes that it has the smallest bandwidth (as measured in combined size of public key and signature) of all round 2 digital signature candidates. Nevertheless, while Falcon--512, for instance, compares favorably to ECDSA--384 in terms of speed, its signatures are well over 10 times larger. For applications that store large number of signatures, or that require signatures to fit in prescribed packet sizes, this can be a critical limitation.
In this paper, we explore several approaches to further improve the size of hash-and-sign lattice-based signatures, particularly instantiated over NTRU lattices like Falcon and its recent variant Mitaka. In particular, while GPV signatures are usually obtained by sampling lattice points according to some *spherical* discrete Gaussian distribution, we show that it can be beneficial to sample instead according to a suitably chosen *ellipsoidal* discrete Gaussian: this is because only half of the sampled Gaussian vector is actually output as the signature, while the other half is recovered during verification. Making the half that actually occurs in signatures shorter reduces signature size at essentially no security loss (in a suitable range of parameters). Similarly, we show that reducing the modulus $q$ with respect to which signatures are computed can improve signature size as well as verification key size almost ``for free''; this is particularly true for constructions like Falcon and Mitaka that do not make substantial use of NTT-based multiplication (and rely instead on transcendental FFT). Finally, we show that the Gaussian vectors in signatures can be represented in a more compact way with appropriate coding-theoretic techniques, improving signature size by an additional 7 to 14%. All in all, we manage to reduce the size of, e.g., Falcon signatures by 30--40% at the cost of only 4--6 bits of Core-SVP security.
2020
EUROCRYPT
Integral Matrix Gram Root and Lattice Gaussian Sampling without Floats
📺
Abstract
Many advanced lattice based cryptosystems require to sample lattice points from Gaussian distributions. One challenge for this task is that all current algorithms resort to floating-point arithmetic (FPA) at some point, which has numerous drawbacks in practice: it requires numerical stability analysis, extra storage for high-precision, lazy/backtracking techniques for efficiency, and may suffer from weak determinism which can completely break certain schemes.
In this paper, we give techniques to implement Gaussian sampling over general lattices without using FPA. To this end, we revisit the approach of Peikert, using perturbation sampling. Peikert's approach uses continuous Gaussian sampling and some decomposition $\BSigma = \matA \matA^t$ of the target covariance matrix $\BSigma$. The suggested decomposition, e.g. the Cholesky decomposition, gives rise to a square matrix $\matA$ with real (not integer) entries. Our idea, in a nutshell, is to replace this decomposition by an integral one. While there is in general no integer solution if we restrict $\matA$ to being a square matrix, we show that such a decomposition can be efficiently found by allowing $\matA$ to be wider (say $n \times 9n$). This can be viewed as an extension of Lagrange's four-square theorem to matrices. In addition, we adapt our integral decomposition algorithm to the ring setting: for power-of-2 cyclotomics, we can exploit the tower of rings structure for improved complexity and compactness.
2020
EUROCRYPT
Key Recovery from Gram--Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices
📺
Abstract
In this paper, we initiate the study of side-channel leakage in hash-and-sign lattice-based signatures, with particular emphasis on the two efficient implementations of the original GPV lattice-trapdoor paradigm for signatures, namely NIST second-round candidate Falcon and its simpler predecessor DLP. Both of these schemes implement the GPV signature scheme over NTRU lattices, achieving great speed-ups over the general lattice case. Our results are mainly threefold.
First, we identify a specific source of side-channel leakage in most implementations of those schemes, namely, the one-dimensional Gaussian sampling steps within lattice Gaussian sampling. It turns out that the implementations of these steps often leak the Gram--Schmidt norms of the secret lattice basis.
Second, we elucidate the link between this leakage and the secret key, by showing that the entire secret key can be efficiently reconstructed solely from those Gram--Schmidt norms. The result makes heavy use of the algebraic structure of the corresponding schemes, which work over a power-of-two cyclotomic field.
Third, we concretely demonstrate the side-channel attack against DLP (but not Falcon due to the different structures of the two schemes). The challenge is that timing information only provides an approximation of the Gram--Schmidt norms, so our algebraic recovery technique needs to be combined with pruned tree search in order to apply it to approximate values. Experimentally, we show that around $2^{35}$ DLP traces are enough to reconstruct the entire key with good probability.
2020
JOFC
Learning Strikes Again: The Case of the DRS Signature Scheme
Abstract
Lattice signature schemes generally require particular care when it comes to preventing secret information from leaking through signature transcript. For example, the Goldreich–Goldwasser–Halevi (GGH) signature scheme and the NTRUSign scheme were completely broken by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt 2006). Several heuristic countermeasures were also shown vulnerable to similar statistical attacks. At PKC 2008, Plantard, Susilo and Win proposed a new variant of GGH, informally arguing resistance to such attacks. Based on this variant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature scheme, called DRS, that is in the round 1 of the NIST post-quantum cryptography project. In this work, we propose yet another statistical attack and demonstrate a weakness of the DRS scheme: one can recover some partial information of the secret key from sufficiently many signatures. One difficulty is that, due to the DRS reduction algorithm, the relation between the statistical leak and the secret seems more intricate. We work around this difficulty by training a statistical model, using a few features that we designed according to a simple heuristic analysis. While we only recover partial secret coefficients, this information is easily exploited by lattice attacks, significantly decreasing their complexity. Concretely, we claim that, provided that $$100\,000$$ 100 000 signatures are available, the secret key may be recovered using BKZ-138 for the first set of DRS parameters submitted to the NIST. This puts the security level of this parameter set below 80-bits (maybe even 70-bits), to be compared to an original claim of 128-bits. Furthermore, we review the DRS v2 scheme that is proposed to resist above statistical attack. For this countermeasure, while one may not recover partial secret coefficients exactly by learning, it seems feasible to gain some information on the secret key. Exploiting this information, we can still effectively reduce the cost of lattice attacks.
2018
ASIACRYPT
Learning Strikes Again: The Case of the DRS Signature Scheme
Abstract
Lattice signature schemes generally require particular care when it comes to preventing secret information from leaking through signature transcript. For example, the Goldreich-Goldwasser-Halevi (GGH) signature scheme and the NTRUSign scheme were completely broken by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt 2006). Several heuristic countermeasures were also shown vulnerable to similar statistical attacks.At PKC 2008, Plantard, Susilo and Win proposed a new variant of GGH, informally arguing resistance to such attacks. Based on this variant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature scheme, called DRS, that has been accepted in the round 1 of the NIST post-quantum cryptography project.In this work, we propose yet another statistical attack and demonstrate a weakness of the DRS scheme: one can recover some partial information of the secret key from sufficiently many signatures. One difficulty is that, due to the DRS reduction algorithm, the relation between the statistical leak and the secret seems more intricate. We work around this difficulty by training a statistical model, using a few features that we designed according to a simple heuristic analysis.While we only recover partial information on the secret key, this information is easily exploited by lattice attacks, significantly decreasing their complexity. Concretely, we claim that, provided that $$100\,000$$ signatures are available, the secret key may be recovered using BKZ-138 for the first set of DRS parameters submitted to the NIST. This puts the security level of this parameter set below 80-bits (maybe even 70-bits), to be compared to an original claim of 128-bits.
Program Committees
- Asiacrypt 2023
Coauthors
- Masayuki Abe (1)
- Léo Ducas (3)
- Thomas Espitau (4)
- Pierre-Alain Fouque (3)
- Steven D. Galbraith (1)
- François Gérard (1)
- Huiwen Jia (1)
- Kaijie Jiang (1)
- Paul Kirchner (2)
- Xiuhan Lin (2)
- Guoxiao Liu (1)
- Hengyi Luo (1)
- Thomas Pornin (1)
- Thomas Prest (1)
- Mélissa Rossi (1)
- Akira Takahashi (1)
- Mehdi Tibouchi (4)
- Alexandre Wallet (4)
- An Wang (1)
- Weijia Wang (1)
- Xiaoyun Wang (3)
- Guangwu Xu (1)
- Yang Yu (14)
- Moeto Suzuki (1)
- Shiduo Zhang (3)