International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Hengyi Luo

Publications

Year
Venue
Title
2024
ASIACRYPT
Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms
At Eurocrypt'24, Mureau et al. formally defined the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field $\mathbb{K}$, and proposed a heuristic randomized algorithm solving module-LIP for modules of rank 2 in $\mathbb{K}^2$ with a totally real number field $\mathbb{K}$, which runs in classical polynomial time for a large class of modules and a large class of totally real number field under some reasonable number theoretic assumptions. In this paper, by introducing a (pseudo) symplectic automorphism of the module, we successfully reduce the problem of solving module-LIP over CM number field to the problem of finding certain symplectic automorphism. Furthermore, we show that a weak (pseudo) symplectic automorphism can be computed efficiently, which immediately turns out to be the desired automorphism when the module is in a totally real number field. This directly results in a provable deterministic polynomial-time algorithm solving module-LIP for rank-2 modules in $\mathbb{K}^2$ where $\mathbb{K}$ is a totally real number field, without any assumptions or restrictions on the modules and the totally real number fields. Moreover, the weak symplectic automorphism can also be utilized to invalidate the omSVP assumption employed in HAWK's forgery security analysis, although it does not yield any actual attacks against HAWK itself.
2023
ASIACRYPT
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on rotations of $\mathbb{Z}^n$ by exploiting the symmetry property. We introduce a randomization framework that can be roughly viewed as `applying random automorphisms’ to the output of an oracle, without accessing the automorphism group. Using this framework, we obtain new reduction results for rotations of $\mathbb{Z}^n$. First, we present a reduction from $\mathbb{Z}$LIP to $\mathbb{Z}$SCVP. Here $\mathbb{Z}$SCVP is the problem of finding the shortest characteristic vectors, which is a special case of CVP where the target vector is a deep hole of the lattice. Moreover, we prove a reduction from $\mathbb{Z}$SVP to $\gamma$-$\mathbb{Z}$SVP for any constant $\gamma = O(1)$ in the same dimension, which implies that $\mathbb{Z}$SVP is as hard as its approximate version for any constant approximation factor. Second, we investigate the problem of finding a nontrivial automorphism for a given lattice, which is called LAP. Specifically, we use the randomization framework to show that $\mathbb{Z}$LAP is as hard as $\mathbb{Z}$LIP. We note that our result can be viewed as a $\mathbb{Z}^n$-analogue of Lenstra and Silverberg's result in [JoC2017], but with a different assumption: they assume the $G$-lattice structure, while we assume the access to an oracle that outputs a nontrivial automorphism.