CryptoDB
Robert Primas
Publications
Year
Venue
Title
2023
TCHES
Smooth Passage with the Guards: Second-Order Hardware Masking of the AES with Low Randomness and Low Latency
Abstract
Cryptographic devices in hostile environments can be vulnerable to physical attacks such as power analysis. Masking is a popular countermeasure against such attacks, which works by splitting every sensitive variable into d+1 randomized shares. The implementation cost of the masking countermeasure in hardware increases significantly with the masking order d, and protecting designs often results in a large overhead. One of the main drivers of the cost is the required amount of fresh randomness for masking the non-linear parts of a cipher. In the case of AES, first-order designs have been built without the need for any fresh randomness, but state-of-the-art higher-order designs still require a significant number of random bits per encryption. Attempts to reduce the randomness however often result in a considerable latency overhead, which is not favorable in practice. This raises the need for AES designs offering a decent performance tradeoff, which are efficient both in terms of required randomness and latency.In this work, we present a second-order AES design with the minimal number of three shares, requiring only 3 200 random bits per encryption at a latency of 5 cycles per round. Our design represents a significant improvement compared to state-of-the-art designs that require more randomness and/or have a higher latency. The core of the design is an optimized 5-cycle AES S-box which needs 78 bits of fresh randomness. We use this S-box to construct a round-based AES design, for which we present a concept for sharing randomness across the S-boxes based on the changing of the guards (COTG) technique. We assess the security of our design in the probing model using a formal verification tool. Furthermore, we evaluate the practical side-channel resistance on an FPGA.
2023
TCHES
Quantile: Quantifying Information Leakage
Abstract
The masking countermeasure is very effective against side-channel attacks such as differential power analysis. However, the design of masked circuits is a challenging problem since one has to ensure security while minimizing performance overheads. The security of masking is often studied in the t-probing model, and multiple formal verification tools can verify this notion. However, these tools generally cannot verify large masked computations due to computational complexity.We introduce a new verification tool named Quantile, which performs randomized simulations of the masked circuit in order to bound the mutual information between the leakage and the secret variables. Our approach ensures good scalability with the circuit size and results in proven statistical security bounds. Further, our bounds are quantitative and, therefore, more nuanced than t-probing security claims: by bounding the amount of information contained in the lower-order leakage, Quantile can evaluate the security provided by masking even when they are not 1-probing secure, i.e., when they are classically considered as insecure. As an example, we apply Quantile to masked circuits of Prince and AES, where randomness is aggressively reused.
2022
TCHES
Riding the Waves Towards Generic Single-Cycle Masking in Hardware
Abstract
Research on the design of masked cryptographic hardware circuits in the past has mostly focused on reducing area and randomness requirements. However, many embedded devices like smart cards and IoT nodes also need to meet certain performance criteria, which is why the latency of masked hardware circuits also represents an important metric for many practical applications.The root cause of latency in masked hardware circuits is the need for additional register stages that synchronize the propagation of shares. Otherwise, glitches would violate the basic assumptions of the used masking scheme. This issue can be addressed to some extent, e.g., by using lightweight cryptographic algorithms with low-degree Sboxes, however, many applications still require the usage of schemes with higher-degree S-boxes like AES. Several recent works have already proposed solutions that help reduce this latency yet they either come with noticeably increased area/randomness requirements, limitations on masking orders, or specific assumptions on the general architecture of the crypto core.In this work, we introduce a generic and efficient method for designing single-cycle glitch-resistant (higher-order) masked hardware of cryptographic S-boxes. We refer to this technique as (generic) Self-Synchronized Masking (“SESYM”). The main idea of our approach is to replace register stages with a partial dual-rail encoding of masked signals that ensures synchronization within the circuit. More concretely, we show that WDDL gates and Muller C-elements can be used in combination with standard masking schemes to design single-cycle S-box circuits that, especially in case of higher-degree S-boxes, have noticeably lower requirements in terms of area and online randomness. We apply our method to DOM-based S-boxes of Ascon and AES and compare the resulting circuits to existing latency optimized circuits based on TI, GLM, and LMDPL. The latency of all three designs is reduced to single-cycle operation and are dth-order secure. Compared to GLM-masked Ascon, our approach comes with a 6.4 times reduction in online randomness for all protection orders. Compared to 1st-order LMDPL-masked AES, our approach achieves comparable results, while it is more generic, amongst others, by also supporting higher-order designs. We also underline the practical protection of our constructions against power analysis attacks via empirical and formal verification approaches.
2021
TCHES
Chosen Ciphertext k-Trace Attacks on Masked CCA2 Secure Kyber
📺
Abstract
Single-trace attacks are a considerable threat to implementations of classic public-key schemes, and their implications on newer lattice-based schemes are still not well understood. Two recent works have presented successful single-trace attacks targeting the Number Theoretic Transform (NTT), which is at the heart of many lattice-based schemes. However, these attacks either require a quite powerful side-channel adversary or are restricted to specific scenarios such as the encryption of ephemeral secrets. It is still an open question if such attacks can be performed by simpler adversaries while targeting more common public-key scenarios. In this paper, we answer this question positively. First, we present a method for crafting ring/module-LWE ciphertexts that result in sparse polynomials at the input of inverse NTT computations, independent of the used private key. We then demonstrate how this sparseness can be incorporated into a side-channel attack, thereby significantly improving noise resistance of the attack compared to previous works. The effectiveness of our attack is shown on the use-case of CCA2 secure Kyber k-module-LWE, where k ∈ {2, 3, 4}. Our k-trace attack on the long-term secret can handle noise up to a σ ≤ 1.2 in the noisy Hamming weight leakage model, also for masked implementations. A 2k-trace variant for Kyber1024 even allows noise σ ≤ 2.2 also in the masked case, with more traces allowing us to recover keys up to σ ≤ 2.7. Single-trace attack variants have a noise tolerance depending on the Kyber parameter set, ranging from σ ≤ 0.5 to σ ≤ 0.7. As a comparison, similar previous attacks in the masked setting were only successful with σ ≤ 0.5.
2021
ASIACRYPT
Secure and Efficient Software Masking on Superscalar Pipelined Processors
📺
Abstract
Physical side-channel attacks like power analysis pose a serious threat to cryptographic devices in real-world applications. Consequently, devices implement algorithmic countermeasures like masking.
In the past, works on the design and verification of masked software implementations have mostly focused on simple microprocessors that findusage on smart cards. However, many other applications such as in the automotive industry require side-channel protected cryptographic computations on much more powerful CPUs. In such situations, the security loss due to complex architectural side-effects, the corresponding performance degradation, as well as discussions of suitable probing models and verification techniques are still vastly unexplored research questions.
We answer these questions and perform a comprehensive analysis of more complex processor architectures in the context of masking-related side effects. First, we analyze the RISC-V SweRV core — featuring a 9-stage pipeline, two execution units, and load/store buffers — and point out
a significant gap between security in a simple software probing model and practical security on such CPUs. More concretely, we show that architectural side effects of complex CPU architectures can significantly reduce the protection order of masked software, both via formal analysis in the hardware probing model, as well as empirically via gate-level timing simulations. We then discuss the options of fixing these problems in hardware or leaving them as constraints to software. Based on these software constraints, we formulate general rules for the design of masked software on more complex CPUs. Finally, we compare several implementation strategies for masking schemes and present in a case study that designing secure masked software for complex CPUs is still possible with overhead as low as 13%.
2020
TOSC
Analyzing the Linear Keystream Biases in AEGIS
📺
Abstract
AEGIS is one of the authenticated encryption designs selected for the final portfolio of the CAESAR competition. It combines the AES round function and simple Boolean operations to update its large state and extract a keystream to achieve an excellent software performance. In 2014, Minaud discovered slight biases in the keystream based on linear characteristics. For family member AEGIS-256, these could be exploited to undermine the confidentiality faster than generic attacks, but this still requires very large amounts of data. For final portfolio member AEGIS-128, these attacks are currently less efficient than generic attacks. We propose improved keystream approximations for the AEGIS family, but also prove upper bounds below 2−128 for the squared correlation contribution of any single suitable linear characteristic.
2020
TCHES
Single-Trace Attacks on Keccak
📺
Abstract
Since its selection as the winner of the SHA-3 competition, Keccak, with all its variants, has found a large number of applications. It is, for instance, a common building block in schemes submitted to NIST’s post-quantum cryptography project. In many of these applications, Keccak processes ephemeral secrets. In such a setting, side-channel adversaries are limited to a single observation, meaning that differential attacks are inherently prevented. If, however, such a single trace of Keccak can already be sufficient for key recovery has so far been unknown. In this paper, we change the above by presenting the first single-trace attack targeting Keccak. Our method is based on soft-analytical side-channel attacks and, thus, combines template matching with message passing in a graphical model of the attacked algorithm. As a straight-forward model of Keccak does not yield satisfactory results, we describe several optimizations for the modeling and the message-passing algorithm. Their combination allows attaining high attack performance in terms of both success rate as well as computational runtime. We evaluate our attack assuming generic software (microcontroller) targets and thus use simulations in the generic noisy Hamming-weight leakage model. Hence, we assume relatively modest profiling capabilities of the adversary. Nonetheless, the attack can reliably recover secrets in a large number of evaluated scenarios at realistic noise levels. Consequently, we demonstrate the need for countermeasures even in settings where DPA is not a threat.
2020
TCHES
Protecting against Statistical Ineffective Fault Attacks
📺
Abstract
Statistical Ineffective Fault Attacks (SIFA) pose a threat for many practical implementations of symmetric primitives. Countermeasures against both power analysis and fault attacks typically do not prevent straightforward SIFA attacks, which require only very limited knowledge about the concrete implementation. Therefore, the exploration of countermeasures against SIFA that do not rely on protocols or physical protection mechanisms is of great interest. In this paper, we describe different countermeasure strategies against SIFA. First, we introduce an abstraction layer between the algorithmic specification of a cipher and its implementation in hardware or software to study and describe resistance against SIFA. We then show that by basing the masked implementation on permutations as building blocks, we can build circuits that withstand single-fault SIFA and DPA attacks. We show how this approach can be applied to 3-bit, 4-bit, and 5-bit S-boxes and the AES S-box. Additionally, we present a strategy based on fine-grained fault detection suitable for protecting any circuit against SIFA attacks. Although this approach may lead to a higher implementation cost due to the fine-grained detection needed, it can be used to protect arbitrary circuits and can be generalized to cover multi-fault SIFA. For single-fault SIFA protection, our countermeasures only have a small computational overhead compared to a simple combination of masking and duplication.
2020
TOSC
Isap v2.0
📺
Abstract
We specify Isap v2.0, a lightweight permutation-based authenticated encryption algorithm that is designed to ease protection against side-channel and fault attacks. This design is an improved version of the previously published Isap v1.0, and offers increased protection against implementation attacks as well as more efficient implementations. Isap v2.0 is a candidate in NIST’s LightWeight Cryptography (LWC) project, which aims to identify and standardize authenticated ciphers that are well-suited for applications in constrained environments. We provide a self-contained specification of the new Isap v2.0 mode and discuss its design rationale. We formally prove the security of the Isap v2.0 mode in the leakage-resilient setting. Finally, in an extensive implementation overview, we show that Isap v2.0 can be implemented securely with very low area requirements.
https://isap.iaik.tugraz.at
2018
TCHES
SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography
Abstract
Since the seminal work of Boneh et al., the threat of fault attacks has been widely known and techniques for fault attacks and countermeasures have been studied extensively. The vast majority of the literature on fault attacks focuses on the ability of fault attacks to change an intermediate value to a faulty one, such as differential fault analysis (DFA), collision fault analysis, statistical fault attack (SFA), fault sensitivity analysis, or differential fault intensity analysis (DFIA). The other aspect of faults—that faults can be induced and do not change a value—has been researched far less. In case of symmetric ciphers, ineffective fault attacks (IFA) exploit this aspect. However, IFA relies on the ability of an attacker to reliably induce reproducible deterministic faults like stuck-at faults on parts of small values (e.g., one bit or byte), which is often considered to be impracticable.As a consequence, most countermeasures against fault attacks do not focus on such attacks, but on attacks exploiting changes of intermediate values and usually try to detect such a change (detection-based), or to destroy the exploitable information if a fault happens (infective countermeasures). Such countermeasures implicitly assume that the release of “fault-free” ciphertexts in the presence of a fault-inducing attacker does not reveal any exploitable information. In this work, we show that this assumption is not valid and we present novel fault attacks that work in the presence of detection-based and infective countermeasures. The attacks exploit the fact that intermediate values leading to “fault-free” ciphertexts show a non-uniform distribution, while they should be distributed uniformly. The presented attacks are entirely practical and are demonstrated to work for software implementations of AES and for a hardware co-processor. These practical attacks rely on fault induction by means of clock glitches and hence, are achieved using only low-cost equipment. This is feasible because our attack is very robust under noisy fault induction attempts and does not require the attacker to model or profile the exact fault effect. We target two types of countermeasures as examples: simple time redundancy with comparison and several infective countermeasures. However, our attacks can be applied to a wider range of countermeasures and are not restricted to these two countermeasures.
2018
ASIACRYPT
Statistical Ineffective Fault Attacks on Masked AES with Fault Countermeasures
Abstract
Implementation attacks like side-channel and fault attacks are a threat to deployed devices especially if an attacker has physical access. As a consequence, devices like smart cards and IoT devices usually provide countermeasures against implementation attacks, such as masking against side-channel attacks and detection-based countermeasures like temporal or spacial redundancy against fault attacks. In this paper, we show how to attack implementations protected with both masking and detection-based fault countermeasures by using statistical ineffective fault attacks using a single fault induction per execution. Our attacks are largely unaffected by the deployed protection order of masking and the level of redundancy of the detection-based countermeasure. These observations show that the combination of masking plus error detection alone may not provide sufficient protection against implementation attacks.
2017
CHES
Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption
Abstract
Although lattice-based cryptography has proven to be a particularly efficient approach to post-quantum cryptography, its security against side-channel attacks is still a very open topic. There already exist some first works that use masking to achieve DPA security. However, for public-key primitives SPA attacks that use just a single trace are also highly relevant. For lattice-based cryptography this implementation-security aspect is still unexplored.In this work, we present the first single-trace attack on lattice-based encryption. As only a single side-channel observation is needed for full key recovery, it can also be used to attack masked implementations. We use leakage coming from the Number Theoretic Transform, which is at the heart of almost all efficient lattice-based implementations. This means that our attack can be adapted to a large range of other lattice-based constructions and their respective implementations.Our attack consists of 3 main steps. First, we perform a template matching on all modular operations in the decryption process. Second, we efficiently combine all this side-channel information using belief propagation. And third, we perform a lattice-decoding to recover the private key. We show that the attack allows full key recovery not only in a generic noisy Hamming-weight setting, but also based on real traces measured on an ARM Cortex-M4F microcontroller.
Coauthors
- Roderick Bloem (1)
- Gaëtan Cassiers (1)
- Joan Daemen (1)
- Christoph Dobraunig (4)
- Maria Eichlseder (5)
- Barbara Gigerl (3)
- Hannes Gross (2)
- Vedad Hadžic (1)
- Mike Hamburg (1)
- Julius Hermelink (1)
- Matthias J. Kannwischer (1)
- Franz Klug (1)
- Thomas Korak (1)
- Stefan Mangar (1)
- Stefan Mangard (7)
- Florian Mendel (5)
- Bart Mennink (1)
- Marcel Nageler (1)
- Rishub Nagpal (1)
- Peter Pessl (2)
- Robert Primas (12)
- Simona Samardjiska (1)
- Thomas Schamberger (1)
- Silvan Streit (1)
- Emanuele Strieder (1)
- Thomas Unterluggauer (1)
- Christine van Vredendaal (1)