CryptoDB
Alexander Bienstock
Publications
Year
Venue
Title
2024
ASIACRYPT
Interval Key-Encapsulation Mechanism
Abstract
Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key k to Bob for some time t such that Bob can decapsulate it at any time t'=<t. Crucially, a corruption of Bob's secret key after time t does not reveal k.
In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality of previous keys against future corruptions but also confidentiality of future keys against past corruptions. For this, Bob can regularly renew his secret key and inform others about the corresponding public key. IKEM enables Bob to decapsulate keys sent to him over an interval of time extending into the past, in case senders have not obtained his latest public key; forward security only needs to hold with respect to keys encapsulated before this interval. This basic IKEM variant can be instantiated based on standard KEM, which we prove to be optimal in terms of assumptions as well as ciphertext and key sizes.
We also extend this notion of IKEM for settings in which Bob decapsulates (much) later than Alice encapsulates (e.g., in high-latency or segmented networks): if a third user Charlie forwards Alice's ciphertext to Bob and, additionally, knows a recently renewed public key of Bob's, Charlie could re-encrypt the ciphertext for better PCS. We call this extended notion IKEMR. Our first IKEMR construction based on trapdoor permutations has (almost) constant sized ciphertexts in the number of re-encryptions; and our second IKEMR construction based on FS-PKE has constant sized public keys in the interval size.
Finally, to bypass our lower bound on the IKEM(R) secret key size, which must be linear in the interval size, we develop a new Interval RAM primitive with which Bob only stores a constant sized part of his secret key locally, while outsourcing the rest to a (possibly adversarial) server.
For all our constructions, we achieve security against active adversaries. For this, we obtain new insights on Replayable CCA security for KEM-type primitives, which might be of independent interest.
2024
ASIACRYPT
Honest Majority GOD MPC with O(depth(C)) Rounds and Low Online Communication
Abstract
In the context of secure multiparty computation (MPC) protocols with guaranteed output delivery (GOD) for the honest majority setting, the state-of-the-art in terms of communication is the work of (Goyal et al. CRYPTO'20), which communicates O(n|C|) field elements, where |C| is the size of the circuit being computed and n is the number of parties. Their round complexity, as usual in secret-sharing based MPC, is proportional to O(depth(C)), but only in the optimistic case where there is no cheating. Under attack, the number of rounds can increase to \Omega(n^2) before honest parties receive output, which is undesired for shallow circuits with depth(C) << n^2. In contrast, other protocols that only require O(depth(C) rounds even in the worst case exist, but the state-of-the-art from (Choudhury and Patra, Transactions on Information Theory, 2017) still requires \Omega(n^4|C|) communication in the offline phase, and \Omega(n^3|C|) in the online (for both point-to-point and broadcast channels). We see there exists a tension between efficient communication and number of rounds. For reference, the recent work of (Abraham et al., EUROCRYPT'23) shows that for perfect security and t<n/3, protocols with both linear communication and O(depth(C)) rounds exist.
We address this state of affairs by presenting a novel honest majority GOD protocol that maintains O(depth(C)) rounds, even under attack, while improving over the communication of the most efficient protocol in this setting by Choudhury and Patra. More precisely, our protocol has point-to-point (P2P) online communication of O(n|C|), accompanied by O(n|C|) broadcasted (BC) elements, while the offline has O(n^3|C|) P2P communication with O(n^3|C|) BC. This improves over the previous best result, and reduces the tension between communication and round complexity. Our protocol is achieved via a careful use of packed secret-sharing in order to improve the communication of existing verifiable secret-sharing approaches, although at the expense of weakening their robust guarantees: reconstruction of shared values may fail, but only if the adversary gives away the identities of many corrupt parties. We show that this less powerful notion is still useful for MPC, and we use this as a core building block in our construction. Using this weaker VSS, we adapt the recent secure-with-abort Turbopack protocol (Escudero et al. CCS'22) to the GOD setting without significantly sacrificing in efficiency.
2023
CRYPTO
On Linear Communication Complexity for (Maximally) Fluid MPC
Abstract
Secure multiparty computation protocols with dynamic parties, which assume that honest parties do not need to be online throughout the whole execution of the protocol, have recently gained a lot of traction for computations of large scale distributed protocols, such as blockchains. More specifically, in Fluid MPC, introduced in (Choudhuri et al. CRYPTO 2021), parties can dynamically join and leave the computation from round to round. The best known Fluid MPC protocol in the honest majority setting communicates O(n^2) elements per gate where n is the number of parties online at a time. While Le Mans (Rachuri and Scholl, CRYPTO 2022) extends Fluid MPC to the dishonest majority setting with preprocessing, it still communicates O(n^2) elements per gate.
In this work we present alternative Fluid MPC solutions that require O(n) communication per gate for both the information-theoretic honest majority setting and the information-theoretic dishonest majority setting with preprocessing. Our solutions also achieve maximal fluidity where parties only need to be online for a single communication round. Additionally, we show that a protocol in the information-theoretic dishonest majority setting with sub-quadratic o(n^2) overhead per gate requires for each of the N parties who may ever participate in the (later) execution phase, \Omega(N) preprocessed data per gate.
2023
TCC
Towards Topology-Hiding Computation from Oblivious Transfer
Abstract
Topology-Hiding Computation (THC) enables parties to securely compute a function on an incomplete network without revealing the network topology. It is known that secure computation on a complete network can be based on oblivious transfer (OT), even if a majority of the participating parties are corrupt. In contrast, THC in the dishonest majority setting is only known from assumptions that imply (additively) homomorphic encryption, such as Quadratic Residuosity, Decisional Diffie-Hellman, or Learning With Errors.
In this work we move towards closing the gap between MPC and THC by presenting a protocol for THC on general graphs secure against all-but-one semi-honest corruptions from constant-round constant-overhead secure two-party computation. Our protocol is therefore the first to achieve THC on arbitrary networks without relying on assumptions with rich algebraic structure. As a technical tool, we introduce the notion of locally simulatable MPC, which we believe to be of independent interest.
2022
CRYPTO
A More Complete Analysis of the Signal Double Ratchet Algorithm
📺
Abstract
Seminal works by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [Journal of Cryptology 2020] and Alwen, Coretti, and Dodis [EUROCRYPT 2019] provided the first formal frameworks for studying the widely-used Signal Double Ratchet (DR for short) algorithm.
In this work, we develop a new Universally Composable (UC) definition F_DR that we show is provably achieved by the DR protocol. Our definition captures not only the security and correctness guarantees of the DR already identified in the prior state-of-the-art analyses of Cohn-Gordon et al. and Alwen et al., but also more guarantees that are absent from one or both of these works. In particular, we construct six different modified versions of the DR protocol, all of which are insecure according to our definition F_DR, but remain secure according to one (or both) of their definitions. For example, our definition is the first to capture CCA-style attacks possible immediately after a compromise — attacks that, as we show, the DR protocol provably resists, but were not captured by prior definitions.
We additionally show that multiple compromises of a party in a short time interval, which the DR should be able to withstand, as we understand from its whitepaper, nonetheless introduce a new non-trivial (albeit minor) weakness of the DR. Since the definitions in the literature (including our F_DR above) do not capture security against this more nuanced scenario, we define a new stronger definition F_TR that does.
Finally, we provide a minimalistic modification to the DR (that we call the Triple Ratchet, or TR for short) and show that the resulting protocol securely realizes the stronger functionality F_TR. Remarkably, the modification incurs no additional communication cost and virtually no additional computational cost. We also show that these techniques can be used to improve communication costs in other scenarios, e.g. practical Updatable Public Key Encryption schemes and the re-randomized TreeKEM protocol of Alwen et al. [CRYPTO 2020] for Secure Group Messaging.
2022
TCC
On the Worst-Case Inefficiency of CGKA
Abstract
Continuous Group Key Agreement (CGKA) is the basis of modern Secure Group Messaging (SGM) protocols. At a high level, a CGKA protocol enables a group of users to continuously compute a shared (evolving) secret while members of the group add new members, remove other existing members, and perform state updates. The state updates allow CGKA to offer desirable security features such as forward secrecy and post-compromise security.
CGKA is regarded as a practical primitive in the real-world. Indeed, there is an IETF Messaging Layer Security (MLS) working group devoted to developing a standard for SGM protocols, including the CGKA protocol at their core. Though known CGKA protocols seem to perform relatively well when considering natural sequences of performed group operations, there are no formal guarantees on their efficiency, other than the O(n) bound which can be achieved by trivial protocols, where n is the number of group numbers. In this context, we ask the following questions and provide negative answers.
1. Can we have CGKA protocols that are efficient in the worst case? We start by answering this basic question in the negative. First, we show that a natural primitive that we call Compact Key Exchange (CKE) is at the core of CGKA, and thus tightly captures CGKA’s worst-case communication cost. Intuitively, CKE requires that: first, n users non-interactively generate key pairs and broadcast their public keys, then, some other special user securely communicates to these n users a shared key. Next, we show that CKE with communication cost o(n) by the special user cannot be realized in a black-box manner from public-key encryption and one-way functions, thus implying the same for CGKA, where n is the corresponding number of group members.
2. Can we realize one CGKA protocol that works as well as possible in all cases? Here again, we present negative evidence showing that no such protocol based on black-box use of public-key encryption and one-way functions exists. Specifically, we show two distributions over sequences of group operations such that no CGKA protocol obtains optimal communication costs on both sequences.
2021
TCC
Forward Secret Encrypted RAM: Lower Bounds and Applications
📺
Abstract
In this paper, we study forward secret encrypted RAMs (FS eRAMs) which enable clients to outsource the storage of an n-entry array to a server. In the case of a catastrophic attack where both client and server storage are compromised, FS eRAMs guarantee that the adversary may not recover any array entries that were deleted or overwritten prior to the attack. A simple folklore FS eRAM construction with O(logn) overhead has been known for at least two decades. Unfortunately, no progress has been made since then. We show the lack of progress is fundamental by presenting an \Omega(log n) lower bound for FS eRAMs proving that the folklore solution is optimal. To do this, we introduce the symbolic model for proving cryptographic data structures lower bounds that may be of independent interest.
Given this limitation, we investigate applications where forward secrecy may be obtained without the additional O(log n) overhead. We show this is possible for oblivious RAMs, memory checkers, and multicast encryption by incorporating the ideas of the folklore FS eRAM solution into carefully chosen constructions of the corresponding primitives.
2020
TCC
On the Price of Concurrency in Group Ratcheting Protocols
📺
Abstract
Post-Compromise Security, or PCS, refers to the ability of a given protocol to recover—by means of normal protocol operations—from the exposure of local states of its (otherwise honest) participants. While PCS in the two-party setting has attracted a lot of attention recently, the problem of achieving PCS in the group setting—called group ratcheting here—is much less understood. On the one hand, one can achieve excellent security by simply executing, in parallel, a two-party ratcheting protocol (e.g., Signal) for each pair of members in a group. However, this incurs O(n) communication overhead for every message sent, where n is the group size. On the other hand, several related protocols were recently developed in the context of the IETF Messaging Layer Security (MLS) effort that improve the communication overhead per message to O(log n). However, this reduction of communication overhead involves a great restriction: group members are not allowed to send and recover from exposures concurrently such that reaching PCS is delayed up to n communication time slots (potentially even more).
In this work we formally study the trade-off between PCS, concurrency, and communication overhead in the context of group ratcheting. Since our main result is a lower bound, we define the cleanest and most restrictive setting where the tension already occurs: static groups equipped with a synchronous (and authenticated) broadcast channel, where up to t arbitrary parties can concurrently send messages in any given round. Already in this setting, we show in a symbolic execution model that PCS requires Omega(t) communication overhead per message. Our symbolic model permits as building blocks black-box use of (even "dual") PRFs, (even key-updatable) PKE (which in our symbolic definition is at least as strong as HIBE), and broadcast encryption, covering all tools used in previous constructions, but prohibiting the use of exotic primitives.
To complement our result, we also prove an almost matching upper bound of O(t(1+log(n/t))), which smoothly increases from O(log n) with no concurrency, to O(n) with unbounded concurrency, matching the previously known protocols.
Coauthors
- Amit Agarwal (1)
- Marshall Ball (1)
- Alexander Bienstock (8)
- Ivan Damgård (1)
- Yevgeniy Dodis (4)
- Daniel Escudero (2)
- Jaiden Fairoze (1)
- Sanjam Garg (2)
- Garrison Grogan (1)
- Mohammad Hajiabadi (1)
- Lisa Kohl (1)
- Pierre Meyer (1)
- Pratyay Mukherjee (1)
- Antigoni Polychroniadou (1)
- Srinivasan Raghuraman (1)
- Paul Rösler (3)
- Daniel Wichs (1)
- Kevin Yeo (1)