CryptoDB
Antigoni Polychroniadou
Publications
Year
Venue
Title
2023
EUROCRYPT
SuperPack: Dishonest Majority MPC with Constant Online Communication
Abstract
In this work we present a novel actively secure dishonest majority MPC protocol, \textsc{SuperPack}, whose efficiency improves as the number of \emph{honest} parties increases. Concretely, let $0<\epsilon<1/2$ and consider an adversary that corrupts $t<n(1-\epsilon)$ out of $n$ parties.
\textsc{SuperPack} requires $6/\epsilon$ field elements of online communication per multiplication gate across all parties, assuming circuit-dependent preprocessing, and $10/\epsilon$ assuming circuit-independent preprocessing.
In contrast, most of previous works such as SPDZ (Damg\aa rd \emph{et al}, ESORICS 2013) and its derivatives perform the same regardless of whether there is only one honest party, or a constant (non-majority) fraction of honest parties.
The only exception is due to Goyal \emph{et al} (CRYPTO 2022), which achieves $58/\epsilon + 96/\epsilon^2$ field elements assuming circuit-independent preprocessing.
Our work improves this result substantially by a factor of at least $25$ in the circuit-independent preprocessing model.
Practically, we also compare our work with the best concretely efficient online protocol Turbospeedz (Ben-Efraim \emph{et al}, ACNS 2019), which achieves $2(1-\epsilon)n$ field elements per multiplication gate among all parties. Our online protocol improves over Turbospeedz as $n$ grows, and as $\epsilon$ approaches $1/2$.
For example, if there are $90\%$ corruptions ($\epsilon=0.1$), with $n=50$ our online protocol is $1.5\times$ better than Turbospeedz and with $n=100$ this factor is $3\times$, but for $70\%$ corruptions ($\epsilon=0.3$) with $n=50$ our online protocol is $3.5\times$ better, and for $n=100$ this factor is $7\times$.
Our circuit-dependent preprocessing can be instantiated from OLE/VOLE. The amount of OLE/VOLE correlations required in our work is a factor of $\approx \epsilon n/2$ smaller than these required by Le Mans (Rachuri and Scholl, CRYPTO 2022) leveraged to instantiate the proprocesing of Turbospeedz.
Our dishonest majority protocol relies on packed secret-sharing and leverages ideas from the honest majority \textsc{TurboPack} (Escudero \emph{et al}, CCS 2022) protocol to achieve concrete efficiency for any circuit topology, not only SIMD.
We implement both \textsc{SuperPack} and Turbospeedz and verify with experimental results that our approach indeed leads to more competitive runtimes in distributed environments with a moderately large number of parties.
2023
CRYPTO
On Linear Communication Complexity for (Maximally) Fluid MPC
Abstract
Secure multiparty computation protocols with dynamic parties, which assume that honest parties do not need to be online throughout the whole execution of the protocol, have recently gained a lot of traction for computations of large scale distributed protocols, such as blockchains. More specifically, in Fluid MPC, introduced in (Choudhuri et al. CRYPTO 2021), parties can dynamically join and leave the computation from round to round. The best known Fluid MPC protocol in the honest majority setting communicates O(n^2) elements per gate where n is the number of parties online at a time. While Le Mans (Rachuri and Scholl, CRYPTO 2022) extends Fluid MPC to the dishonest majority setting with preprocessing, it still communicates O(n^2) elements per gate.
In this work we present alternative Fluid MPC solutions that require O(n) communication per gate for both the information-theoretic honest majority setting and the information-theoretic dishonest majority setting with preprocessing. Our solutions also achieve maximal fluidity where parties only need to be online for a single communication round. Additionally, we show that a protocol in the information-theoretic dishonest majority setting with sub-quadratic o(n^2) overhead per gate requires for each of the N parties who may ever participate in the (later) execution phase, \Omega(N) preprocessed data per gate.
2023
ASIACRYPT
LERNA: Secure Single-Server Aggregation via Key-Homomorphic Masking
Abstract
This paper introduces LERNA, a new framework for single-server secure aggregation. Our protocols are tailored to the setting where multiple consecutive aggregation phases are performed with the same set of clients, a fraction of which can drop out in some of the phases. We rely on an initial secret sharing setup among the clients which is generated once-and-for-all, and reused in all following aggregation phases. Compared to prior works [Bonawitz et al. CCS’17, Bell et al. CCS’20], the reusable setup eliminates one round of communication between the server and clients per aggregation—i.e., we need two rounds for semi-honest security (instead of three), and three rounds (instead of four) in the malicious model. Our approach also significantly reduces the server’s computational costs by only requiring the reconstruction of a single secret-shared value (per aggregation). Prior work required reconstructing a secret-shared value for each client involved in the computation.
We provide instantiations of LERNA based on both the Decisional Composite Residuosity (DCR) and (Ring) Learning with Rounding ((R)LWR) assumptions respectively and evaluate a version based on the latter assumption. In addition to savings in round-complexity (which result in reduced latency), our experiments show that the server computational costs are reduced by two orders of magnitude in comparison to the state-of-the-art. In settings with a large number of clients, we also reduce the computational costs up to twenty-fold for most clients, while a small set of “heavy clients” is subject to a workload that is still smaller than that of prior work.
2022
EUROCRYPT
Lightweight, Maliciously Secure Verifiable Function Secret Sharing
📺
Abstract
In this work, we present a lightweight construction of verifiable two-party function secret sharing (FSS) for point functions and multi-point functions.
Our verifiability method is lightweight in two ways. Firstly, it is concretely efficient, making use of only symmetric key operations and no public key or MPC techniques are involved. Our performance is comparable with the state-of-the-art non-verifiable DPF constructions, and we outperform all prior DPF verification techniques in both computation and communication complexity, which we demonstrate with an implementation of our scheme.
Secondly, our verification procedure is essentially unconstrained. It will verify that distributed point function (DPF) shares correspond to some point function irrespective of the output group size, the structure of the DPF output, or the set of points on which the DPF must be evaluated. This is in stark contrast with prior works, which depended on at least one and often all three of these constraints. In addition, our construction is the first DPF verification protocol that can verify general DPFs while remaining secure even if one server is malicious. Prior work on maliciously secure DPF verification could only verify DPFs where the non-zero output is binary and the output space is a large field.
As an additional feature, our verification procedure can be batched so that verifying a polynomial number of DPF shares requires the exact same amount of communication as verifying one pair of DPF shares.
We combine this packed DPF verification with a novel method for packing DPFs into shares of a multi-point function where the evaluation time, verification time, and verification communication are independent of the number of non-zero points in the function.
An immediate corollary of our results are two-server protocols for PIR and PSI that remain secure when any one of the three parties is malicious (either the client or one of the servers).
2022
CRYPTO
Sharing Transformation and Dishonest Majority MPC with Packed Secret Sharing
📺
Abstract
In the last few years, the efficiency of secure multi-party computation (MPC) in the dishonest majority setting has increased by several orders of magnitudes starting with the SPDZ protocol family which offers a speedy information-theoretic online phase in the prepossessing model. However, state-of-the-art n-party MPC protocols in the dishonest majority setting incur online communication complexity per multiplication gate which is linear in the number of parties, i.e. O(n), per gate across all parties. In this work, we construct the first MPC protocols in the preprocessing model for dishonest majority with sublinear communication complexity per gate in the number of parties n. To achieve our results, we extend the use of packed secret sharing to the dishonest majority setting. For a constant fraction of corrupted parties (i.e. if 99 percent of the parties are corrupt), we can achieve a communication complexity of O(1) field elements per multiplication gate across all parties.
At the crux of our techniques lies a new technique called sharing transformation. The sharing transformation technique allows us to transform shares under one type of linear secret sharing scheme into another, and even perform arbitrary linear maps on the secrets of (packed) secret sharing schemes with optimal communication complexity. This technique can be of independent interest since transferring shares from one type of scheme into another (e.g., for degree reduction) is ubiquitous in MPC. Furthermore, we introduce what we call sparsely packed Shamir sharing which allows us to address the issue of network routing efficiently, and packed Beaver triples which is an extension of the widely used technique of Beaver triples for packed secret sharing (for dishonest majority).
2021
EUROCRYPT
Constant-Overhead Unconditionally Secure Multiparty Computation over Binary Fields
📺
Abstract
We study the communication complexity of unconditionally secure multiparty computation (MPC) protocols in the honest majority setting. Despite tremendous efforts in achieving efficient protocols for binary fields under computational assumptions, there are no efficient unconditional MPC protocols in this setting. In particular, there are no n party protocols with constant overhead admitting communication complexity of O(n) bits per gate. Cascudo, Cramer, Xing and Yuan (CRYPTO 2018) were the first ones to achieve such an overhead in the amortized setting by evaluating O(log n) copies of the same circuit in the binary field in parallel. In this work, we construct the first unconditional MPC protocol secure against a malicious adversary in the honest majority setting evaluating just a single boolean circuit with amortized communication complexity of O(n) bits per gate.
2021
CRYPTO
ATLAS: Efficient and Scalable MPC in the Honest Majority Setting
📺
Abstract
In this work, we address communication, computation, and round efficiency of unconditionally secure multi-party computation for arithmetic circuits in the honest majority setting. We achieve both algorithmic and practical improvements:
- The best known result in the semi-honest setting has been due to Damgard and Nielsen (CRYPTO 2007). Over the last decade, their construction has played an important role in the progress of efficient secure computation. However despite a number of follow-up works, any significant improvements to the basic semi-honest protocol have been hard to come by. We show 33% improvement in communication complexity of this protocol. We show how to generalize this result to the malicious setting, leading to the best known unconditional honest majority MPC with malicious security.
- We focus on the round complexity of the Damgard and Nielsen protocol and improve it by a factor of 2. Our improvement relies on a novel observation relating to an interplay between Damgard and Nielsen multiplication and Beaver triple multiplication. An implementation of our constructions shows an execution run time improvement compared to the state of the art ranging from 30% to 50%.
2021
CRYPTO
Unconditional Communication-Efficient MPC via Hall's Marriage Theorem
📺
Abstract
The best known n party unconditional multiparty computation protocols with an optimal corruption threshold communicates O(n) field elements per gate. This has been the case even in the semi-honest setting despite over a decade of research on communication complexity in this setting. Going to the slightly sub-optimal corruption setting, the work of Damgard, Ishai, and Kroigaard (EUROCRYPT 2010) provided the first protocol for a single circuit achieving communication complexity of O(log |C|) elements per gate. While a number of works have improved upon this result, obtaining a protocol with O(1) field elements per gate has been an open problem.
In this work, we construct the first unconditional multi-party computation protocol evaluating a single arithmetic circuit with amortized communication complexity of O(1) elements per gate.
2021
JOFC
Round-Optimal Secure Multi-party Computation
Abstract
Secure multi-party computation (MPC) is a central cryptographic task that allows a set of mutually distrustful parties to jointly compute some function of their private inputs where security should hold in the presence of an active (i.e. malicious) adversary that can corrupt any number of parties. Despite extensive research, the precise round complexity of this “standard-bearer” cryptographic primitive, under polynomial-time hardness assumptions, is unknown. Recently, Garg, Mukherjee, Pandey and Polychroniadou, in Eurocrypt 2016 demonstrated that the round complexity of any MPC protocol relying on black-box proofs of security in the plain model must be at least four. Following this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solving this question and constructed four-round protocols based on the DDH and LWE assumptions, respectively, albeit with super-polynomial hardness. More recently, Ciampi, Ostrovsky, Siniscalchi and Visconti in TCC 2017 closed the gap for two-party protocols by constructing a four-round protocol from polynomial-time assumptions, concretely, trapdoor permutations. In another work, Ciampi, Ostrovsky, Siniscalchi and Visconti TCC 2017 showed how to design a four-round multi-party protocol for the specific case of multi-party coin-tossing based on one-way functions. In this work, we resolve this question by designing a four-round actively secure multi-party (two or more parties) protocol for general functionalities under standard polynomial-time hardness assumptions with a black-box proof of security, specifically, under the assumptions LWE, DDH, QR and DCR.
2020
EUROCRYPT
Succinct Non-Interactive Secure Computation
📺
Abstract
We present the first maliciously secure protocol for succinct non-interactive secure two-party computation (SNISC): Each player sends just a single message whose length is (essentially) independent of the running time of the function to be computed. The protocol does not require any trusted setup, satisfies superpolynomial-time simulation-based security (SPS), and is based on (subexponential) security of the Learning With Errors (LWE) assumption. We do not rely on SNARKs or "knowledge of exponent"-type assumptions.
Since the protocol is non-interactive, the relaxation to SPS security is needed, as standard polynomial-time simulation is impossible; however, a slight variant of our main protocol yields a SNISC with polynomial-time simulation in the CRS model.
2018
CRYPTO
Limits of Practical Sublinear Secure Computation
📺
Abstract
Secure computations on big data call for protocols that have sublinear communication complexity in the input length. While fully homomorphic encryption (FHE) provides a general solution to the problem, employing it on a large scale is currently quite far from being practical. This is also the case for secure computation tasks that reduce to weaker forms of FHE such as “somewhat homomorphic encryption” or single-server private information retrieval (PIR).Quite unexpectedly, Aggarwal, Mishra, and Pinkas (Eurocrypt 2004), Brickell and Shmatikov (Asiacrypt 2005), and Shelat and Venkitasubramaniam (Asiacrypt 2015) have shown that in several natural instances of secure computation on big data, there are practical sublinear communication protocols that only require sublinear local computation and minimize the use of expensive public-key operations. This raises the question of whether similar protocols exist for other natural problems.In this paper we put forward a framework for separating “practical” sublinear protocols from “impractical” ones, and establish a methodology for identifying “provably hard” big-data problems that do not admit practical protocols. This is akin to the use of NP-completeness to separate hard algorithmic problems from easy ones. We show that while the previous protocols of Aggarwal et al., Brickell and Shmatikov, and Shelat and Venkitasubramaniam are indeed classified as being “practical” in this framework, slight variations of the problems they solve and other natural computational problems on big data are hard.Our negative results are established by showing that the problem at hand is “PIR-hard” in the sense that any secure protocol for the problem implies PIR on a large database. This imposes a barrier on the local computational cost of secure protocols for the problem. We also identify a new natural relaxation of PIR that we call semi-PIR, which is useful for establishing “intermediate hardness” of several practically motivated secure computation tasks. We show that semi-PIR implies slightly sublinear PIR via an adaptive black-box reduction and that ruling out a stronger black-box reduction would imply a major breakthrough in complexity theory. We also establish information-theoretic separations between semi-PIR and PIR, showing that some problems that we prove to be semi-PIR-hard are not PIR-hard.
2018
CRYPTO
Round-Optimal Secure Multi-Party Computation
📺
Abstract
Secure multi-party computation (MPC) is a central cryptographic task that allows a set of mutually distrustful parties to jointly compute some function of their private inputs where security should hold in the presence of a malicious adversary that can corrupt any number of parties. Despite extensive research, the precise round complexity of this “standard-bearer” cryptographic primitive is unknown. Recently, Garg, Mukherjee, Pandey and Polychroniadou, in EUROCRYPT 2016 demonstrated that the round complexity of any MPC protocol relying on black-box proofs of security in the plain model must be at least four. Following this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solving this question and constructed four-round protocols based on non-polynomial time assumptions. More recently, Ciampi, Ostrovsky, Siniscalchi and Visconti in TCC 2017 closed the gap for two-party protocols by constructing a four-round protocol from polynomial-time assumptions. In another work, Ciampi, Ostrovsky, Siniscalchi and Visconti TCC 2017 showed how to design a four-round multi-party protocol for the specific case of multi-party coin-tossing.In this work, we resolve this question by designing a four-round actively secure multi-party (two or more parties) protocol for general functionalities under standard polynomial-time hardness assumptions with a black-box proof of security.
2018
TCC
Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions
Abstract
We present the first two-round multiparty computation (MPC) protocols secure against malicious adaptive corruption in the common reference string (CRS) model, based on DDH, LWE, or QR. Prior two-round adaptively secure protocols were known only in the two-party setting against semi-honest adversaries, or in the general multiparty setting assuming the existence of indistinguishability obfuscation (iO).Our protocols are constructed in two steps. First, we construct two-round oblivious transfer (OT) protocols secure against malicious adaptive corruption in the CRS model based on DDH, LWE, or QR. We achieve this by generically transforming any two-round OT that is only secure against static corruption but has certain oblivious sampleability properties, into a two-round adaptively secure OT. Prior constructions were only secure against semi-honest adversaries or based on iO.Second, building upon recent constructions of two-round MPC from two-round OT in the weaker static corruption setting [Garg and Srinivasan, Benhamouda and Lin, Eurocrypt’18] and using equivocal garbled circuits from [Canetti, Poburinnaya and Venkitasubramaniam, STOC’17], we show how to construct two-round adaptively secure MPC from two-round adaptively secure OT and constant-round adaptively secure MPC, with respect to both malicious and semi-honest adversaries. As a corollary, we also obtain the first 2-round MPC secure against semi-honest adaptive corruption in the plain model based on augmented non-committing encryption (NCE), which can be based on a variety of assumptions, CDH, RSA, DDH, LWE, or factoring Blum integers. Finally, we mention that our OT and MPC protocols in the CRS model are, in fact, adaptively secure in the Universal Composability framework.
2018
ASIACRYPT
More is Less: Perfectly Secure Oblivious Algorithms in the Multi-server Setting
Abstract
The problem of Oblivious RAM (ORAM) has traditionally been studied in the single-server setting, but more recently the multi-server setting has also been considered. Yet it is still unclear whether the multi-server setting has any inherent advantages, e.g., whether the multi-server setting can be used to achieve stronger security goals or provably better efficiency than is possible in the single-server case.In this work, we construct a perfectly secure 3-server ORAM scheme that outperforms the best known single-server scheme by a logarithmic factor. In the process we also show, for the first time, that there exist specific algorithms for which multiple servers can overcome known lower bounds in the single-server setting.
2015
CRYPTO
Program Committees
- Crypto 2023
- PKC 2023
- Crypto 2022
- Crypto 2021
- Crypto 2020
- PKC 2019
- TCC 2019
- PKC 2018
- TCC 2018
Coauthors
- Fabrice Benhamouda (1)
- Alexander Bienstock (1)
- Elette Boyle (1)
- Zvika Brakerski (1)
- T.-H. Hubert Chan (1)
- Chongwon Cho (1)
- Ivan Damgård (2)
- Leo de Castro (1)
- Nico Döttling (1)
- Daniel Escudero (2)
- Sanjam Garg (3)
- Daniel Genkin (1)
- Vipul Goyal (4)
- Divya Gupta (1)
- Shai Halevi (3)
- Carmit Hazay (4)
- Yuval Ishai (2)
- Jonathan Katz (1)
- Hanjun Li (2)
- Huijia Lin (2)
- Peihan Miao (1)
- Andrew Morgan (1)
- Pratyay Mukherjee (1)
- Kartik Nayak (1)
- Jesper Buus Nielsen (1)
- Rafail Ostrovsky (1)
- Omkant Pandey (1)
- Rafael Pass (1)
- Kenneth G. Paterson (1)
- Antigoni Polychroniadou (24)
- Vanishree Rao (1)
- Michael Raskin (1)
- Elaine Shi (1)
- Dale L. Sibborn (1)
- Yifan Song (5)
- Stefano Tessaro (1)
- Muthuramakrishnan Venkitasubramaniam (5)
- Chenkai Weng (1)