CryptoDB
David Knichel
Publications
Year
Venue
Title
2022
TCHES
Generic Hardware Private Circuits: Towards Automated Generation of Composable Secure Gadgets
Abstract
With an increasing number of mobile devices and their high accessibility, protecting the implementation of cryptographic functions in the presence of physical adversaries has become more relevant than ever. Over the last decade, a lion’s share of research in this area has been dedicated to developing countermeasures at an algorithmic level. Here, masking has proven to be a promising approach due to the possibility of formally proving the implementation’s security solely based on its algorithmic description by elegantly modeling the circuit behavior. Theoretically verifying the security of masked circuits becomes more and more challenging with increasing circuit complexity. This motivated the introduction of security notions that enable masking of single gates while still guaranteeing the security when the masked gates are composed. Systematic approaches to generate these masked gates – commonly referred to as gadgets – were restricted to very simple gates like 2-input AND gates. Simply substituting such small gates by a secure gadget usually leads to a large overhead in terms of fresh randomness and additional latency (register stages) being introduced to the design.In this work, we address these problems by presenting a generic framework to construct trivially composable and secure hardware gadgets for arbitrary vectorial Boolean functions, enabling the transformation of much larger sub-circuits into gadgets. In particular, we present a design methodology to generate first-order secure masked gadgets which is well-suited for integration into existing Electronic Design Automation (EDA) tools for automated hardware masking as only the Boolean function expression is required. Furthermore, we practically verify our findings by conducting several case studies and show that our methodology outperforms various other masking schemes in terms of introduced latency or fresh randomness – especially for large circuits.
2022
TCHES
Automated Generation of Masked Hardware
Abstract
Masking has been recognized as a sound and secure countermeasure for cryptographic implementations, protecting against physical side-channel attacks. Even though many different masking schemes have been presented over time, design and implementation of protected cryptographic Integrated Circuits (ICs) remains a challenging task. More specifically, correct and efficient implementation usually requires manual interactions accompanied by longstanding experience in hardware design and physical security. To this end, design and implementation of masked hardware often proves to be an error-prone task for engineers and practitioners. As a result, our novel tool for automated generation of masked hardware (AGEMA) allows even inexperienced engineers and hardware designers to create secure and efficient masked cryptograhic circuits originating from an unprotected design. More precisely, exploiting the concepts of Probe-Isolating Non-Interference (PINI) for secure composition of masked circuits, our tool provides various processing techniques to transform an unprotected design into a secure one, eventually accelerating and safeguarding the process of masking cryptographic hardware. Ultimately, we evaluate our tool in several case studies, emphasizing different trade-offs for the transformation techniques with respect to common performance metrics, such as latency, area, andrandomness.
2022
TCHES
Transitional Leakage in Theory and Practice: Unveiling Security Flaws in Masked Circuits
Abstract
Accelerated by the increased interconnection of highly accessible devices, the demand for effective and efficient protection of hardware designs against Side-Channel Analysis (SCA) is ever rising, causing its topical relevance to remain immense in both, academia and industry. Among a wide range of proposed countermeasures against SCA, masking is a highly promising candidate due to its sound foundations and well-understood security requirements. In addition, formal adversary models have been introduced, aiming to accurately capture real-world attack scenarios while remaining sufficiently simple to efficiently reason about the SCA resilience of designs. Here, the d-probing model is the most prominent and well-studied adversary model. Its extension, introduced as the robust d-probing model, covers physical defaults occurring in hardware implementations, particularly focusing on combinational recombinations (glitches), memory recombinations (transitions), and routing recombinations (coupling).With increasing complexity of modern cryptographic designs and logic circuits, formal security verification becomes ever more cumbersome. This started to spark innovative research on automated verification frameworks. Unfortunately, these verification frameworks mostly focus on security verification of hardware circuits in the presence of glitches, but remain limited in identification and verification of transitional leakage. To this end, we extend SILVER, a recently proposed tool for formal security verification of masked logic circuits, to also detect and verify information leakage resulting from combinations of glitches and transitions. Based on extensive case studies, we further confirm the accuracy and practical relevance of our methodology when assessing and verifying information leakage in hardware implementations.
2022
TCHES
Composable Gadgets with Reused Fresh Masks: First-Order Probing-Secure Hardware Circuits with only 6 Fresh Masks
Abstract
Albeit its many benefits, masking cryptographic hardware designs has proven to be a non-trivial and error-prone task, even for experienced engineers. Masked variants of atomic logic gates, like AND or XOR – commonly referred to as gadgets – aim to facilitate the process of masking large circuits by offering free composition while sustaining the overall design’s security in the d-probing adversary model. A wide variety of research has already been conducted to (i) find formal properties a gadget must fulfill to guarantee composability and (ii) construct gadgets that fulfill these properties, while minimizing overhead requirements. In all existing composition frameworks like NI/SNI/PINI and all corresponding gadget realizations, the security argument relies on the fact that each gadget requires individual fresh randomness. Naturally, this approach leads to very high randomness requirements of the resulting composed circuit. In this work, we present composable gadgets with reused fresh masks (COMAR), allowing the composition of any first-order secure hardware circuit utilizing only 6 fresh masks in total. By construction, our newly presented gadgets render individual fresh randomness unnecessary, while retaining free composition and first-order security in the robust probing model. More precisely, we give an instantiation of gadgets realizing arbitrary XOR and AND gates with an arbitrary number of inputs which can be trivially extended to all basic logic gates. With these, we break the linear dependency between the number of (non-linear) gates in a circuit and the randomness requirements, hence offering the designers the possibility to highly optimize a masked circuit’s randomness requirements while keeping error susceptibility to a minimum.
2022
TCHES
Randomness Optimization for Gadget Compositions in Higher-Order Masking
Abstract
Physical characteristics of electronic devices, leaking secret and sensitive information to an adversary with physical access, pose a long-known threat to cryptographic hardware implementations. Among a variety of proposed countermeasures against such Side-Channel Analysis attacks, masking has emerged as a promising, but often costly, candidate. Furthermore, the manual realization of masked implementations has proven error-prone and often introduces flaws, possibly resulting in insecure circuits. In the context of automatic masking, a new line of research emerged, aiming to replace each physical gate with a secure gadget that fulfills well-defined properties, guaranteeing security when interconnected to a large circuit. Unfortunately, those gadgets introduce a significant amount of additional overhead into the design, in terms of area, latency, and randomness requirements.In this work, we present a novel approach to reduce the demands for randomness in such gadget-composed circuits by reusing randomness across gadgets while maintaining security in the probing adversary model. To this end, we embedded the corresponding optimization passes into an Electronic Design Automation toolchain, able to construct, optimize, and implement masked circuits, starting from an unprotected design. As such, our security-aware optimization offers an additional building block for existing or new Electronic Design Automation frameworks, where security is considered a first-class design constraint.
2021
TCHES
Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s User Authentication through SCA
📺
Abstract
In recent years, smartphones have become an increasingly important storage facility for personal sensitive data ranging from photos and credentials up to financial and medical records like credit cards and person’s diseases. Trivially, it is critical to secure this information and only provide access to the genuine and authenticated user. Smartphone vendors have already taken exceptional care to protect user data by the means of various software and hardware security features like code signing, authenticated boot chain, dedicated co-processor and integrated cryptographic engines with hardware fused keys. Despite these obstacles, adversaries have successfully broken through various software protections in the past, leaving only the hardware as the last standing barrier between the attacker and user data. In this work, we build upon existing software vulnerabilities and break through the final barrier by performing the first publicly reported physical Side-Channel Analysis (SCA) attack on an iPhone in order to extract the hardware-fused devicespecific User Identifier (UID) key. This key – once at hand – allows the adversary to perform an offline brute-force attack on the user passcode employing an optimized and scalable implementation of the Key Derivation Function (KDF) on a Graphics Processing Unit (GPU) cluster. Once the passcode is revealed, the adversary has full access to all user data stored on the device and possibly in the cloud.As the software exploit enables acquisition and processing of hundreds of millions oftraces, this work further shows that an attacker being able to query arbitrary many chosen-data encryption/decryption requests is a realistic model, even for compact systems with advanced software protections, and emphasizes the need for assessing resilience against SCA for a very high number of traces.
2020
ASIACRYPT
SILVER - Statistical Independence and Leakage Verification
📺
Abstract
Implementing cryptographic functions securely in the presence of physical adversaries is still a challenge although a lion's share of research in the physical security domain has been put in development of countermeasures. Among several protection schemes, masking has absorbed the most attention of research in both academic and industrial communities, due to its theoretical foundation allowing to provide proofs or model the achieved security level. In return, masking schemes are difdicult to implement as the implementation process often is manual, complex, and error-prone. This motivated the need for formal verification tools that allow the designers and engineers to analyze and verify the designs before manufacturing.
In this work, we present a new framework to analyze and verify masked implementations against various security notions using different security models as reference. In particular, our framework { which directly processes the resulting gate-level netlist of a hardware synthesis { particularly relies on Reduced Ordered Binary Decision Diagrams (ROBDDs) and the concept of statistical independence of probability distributions. Compared to existing tools, our framework captivates due to its simplicity, accuracy, and functionality while still having a reasonable efficiency for many applications and common use-cases.
Coauthors
- Jakob Feldtkeller (1)
- Tim Güneysu (1)
- David Knichel (7)
- Oleksiy Lisovets (1)
- Thorben Moos (1)
- Amir Moradi (7)
- Nicolai Müller (2)
- Pascal Sasdrich (5)