International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Aron van Baarsen

Publications

Year
Venue
Title
2024
EUROCRYPT
Fuzzy Private Set Intersection with Large Hyperballs
Aron van Baarsen Sihang Pu
Traditional private set intersection (PSI) involves a receiver and a sender holding sets $X$ and $Y$, respectively, with the receiver learning only the intersection $X\cap Y$. We turn our attention to its fuzzy variant, where the receiver holds $|X|$ hyperballs of radius $\delta$ in a metric space and the sender has $|Y|$ points. Representing the hyperballs by their center, the receiver learns the points $x\in X$ for which there exists $y\in Y$ such that $\dist(x,y)\leq \delta$ with respect to some distance metric. Previous approaches either require general-purpose multi-party computation (MPC) techniques like garbled circuits or fully homomorphic encryption (FHE), leak details about the sender’s precise inputs, support limited distance metrics, or scale poorly with the hyperballs' volume. This work presents the first blackbox construction for fuzzy PSI (including other variants such as PSI cardinality, labeled PSI, and circuit PSI), which can handle polynomially large radius and dimension (i.e., a potentially exponentially large volume) in two interaction messages, supporting general $L_{p\in[1,\infty]}$ distance, without relying on garbled circuits or FHE. The protocol excels in both asymptotic and concrete efficiency compared to existing works. For security, we solely rely on the assumption that the Decisional Diffie-Hellman (DDH) holds in the random oracle model.
2024
CIC
Communication-Efficient Multi-Party Computation for RMS Programs
<p> Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for the secure evaluation of “message passing” algorithms, such as the PageRank algorithm. Their protocol's computation and communication complexity are both $\tilde{O}(M\cdot B)$ instead of the $O(M^2)$ complexity achieved by general-purpose MPC protocols, where $M$ denotes the number of nodes and $B$ the (average) number of incoming edges per node. On the downside, their approach achieves only a relatively weak security notion; $1$-out-of-$3$ malicious security with selective abort.</p><p> In this work, we show that PageRank can instead be captured efficiently as a restricted multiplication straight-line (RMS) program, and present a new actively secure MPC protocol tailored to handle RMS programs. In particular, we show that the local knowledge of the participants can be leveraged towards the first maliciously-secure protocol with communication complexity linear in $M$, independently of the sparsity of the graph. We present two variants of our protocol. In our communication-optimized protocol, going from semi-honest to malicious security only introduces a small communication overhead, but results in quadratic computation complexity $O(M^2)$. In our balanced protocol, we still achieve a linear communication complexity $O(M)$, although with worse constants, but a significantly better computational complexity scaling with $O(M\cdot B)$. Additionally, our protocols achieve security with identifiable abort and can tolerate up to $n-1$ corruptions. </p>
2024
CIC
Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting
Aron van Baarsen Marc Stevens
<p>Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection.</p><p>In this paper we consider several settings in which parties take part in multiple Circuit-PSI executions with the same input set, and aim to amortize communications and computations. To that end, we build up a new framework for Circuit-PSI around generalizations of oblivious (programmable) PRFs that are extended with offline setup phases. We present several efficient instantiations of this framework with new security proofs for this setting. As a side result, we obtain a slight improvement in communication and computation complexity over the state-of-the-art semi-honest Circuit-PSI protocol by Bienstock et al. (USENIX '23). Additionally, we present a novel Circuit-PSI protocol from a PRF with secret-shared outputs, which has linear communication and computation complexity in the parties' input set sizes, and is able to realize a stronger security notion. Lastly, we derive the potential amortizations over multiple protocol executions, and observe that each of the presented instantiations is favorable in at least one of the multiple-execution settings. </p>
2021
ASIACRYPT
On Time-Lock Cryptographic Assumptions in Abelian Hidden-Order Groups 📺
Aron van Baarsen Marc Stevens
In this paper we study cryptographic finite abelian groups of unknown order and hardness assumptions in these groups. Abelian groups necessitate multiple group generators, which may be chosen at random. We formalize this setting and hardness assumptions therein. Furthermore, we generalize the algebraic group model and strong algebraic group model from cyclic groups to arbitrary finite abelian groups of unknown order. Building on these formalizations, we present techniques to deal with this new setting, and prove new reductions. These results are relevant for class groups of imaginary quadratic number fields and time-lock cryptography build upon them.