CryptoDB
Marc Stevens
Publications
Year
Venue
Title
2024
CIC
Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting
Abstract
<p>Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection.</p><p>In this paper we consider several settings in which parties take part in multiple Circuit-PSI executions with the same input set, and aim to amortize communications and computations. To that end, we build up a new framework for Circuit-PSI around generalizations of oblivious (programmable) PRFs that are extended with offline setup phases. We present several efficient instantiations of this framework with new security proofs for this setting. As a side result, we obtain a slight improvement in communication and computation complexity over the state-of-the-art semi-honest Circuit-PSI protocol by Bienstock et al. (USENIX '23). Additionally, we present a novel Circuit-PSI protocol from a PRF with secret-shared outputs, which has linear communication and computation complexity in the parties' input set sizes, and is able to realize a stronger security notion. Lastly, we derive the potential amortizations over multiple protocol executions, and observe that each of the presented instantiations is favorable in at least one of the multiple-execution settings. </p>
2024
CIC
Quantum Procedures for Nested Search Problems
Abstract
<p>In this paper we study search problems that arise very often in cryptanalysis: nested search problems, where each search layer has known degrees of freedom and/or constraints. A generic quantum solution for such problems consists of nesting Grover's quantum search algorithm or amplitude amplification (QAA) by Brassard et al., obtaining up to a square-root speedup on classical algorithms. However, the analysis of nested Grover or QAA is complex and introduces technicalities that in previous works are handled in a case-by-case manner. Moreover, straightforward nesting of l layers multiplies the complexity by a constant factor (pi/2)^l.</p><p>In this paper, we aim to remedy both these issues and introduce a generic framework and tools to transform a classical nested search into a quantum procedure. It improves the state-of-the-art in three ways: 1) our framework results in quantum procedures that are significantly simpler to describe and analyze; 2) it reduces the overhead factor from (pi/2)^l to sqrt(l); 3) it is simpler to apply and optimize, without needing manual quantum analysis. We give generic complexity formulas and show that for concrete instances, numerical optimizations enable further improvements, reducing even more the gap to an exact quadratic speedup.</p><p>We demonstrate our framework by giving a tighter analysis of quantum attacks on reduced-round AES. </p>
2023
TOSC
Simplified Modeling of MITM Attacks for Block Ciphers: New (Quantum) Attacks
Abstract
The meet-in-the-middle (MITM) technique has led to many key-recovery attacks on block ciphers and preimage attacks on hash functions. Nowadays, cryptographers use automatic tools that reduce the search of MITM attacks to an optimization problem. Bao et al. (EUROCRYPT 2021) introduced a low-level modeling based on Mixed Integer Linear Programming (MILP) for MITM attacks on hash functions, which was extended to key-recovery attacks by Dong et al. (CRYPTO 2021). However, the modeling only covers AES-like designs. Schrottenloher and Stevens (CRYPTO 2022) proposed a different approach aiming at higher-level simplified models. However, this modeling was limited to cryptographic permutations.In this paper, we extend the latter simplified modeling to also cover block ciphers with simple key schedules. The resulting modeling enables us to target a large array of primitives, typically lightweight SPN ciphers where the key schedule has a slow diffusion, or none at all. We give several applications such as full breaks of the PIPO-256 and FUTURE block ciphers, and reduced-round classical and quantum attacks on SATURNIN-Hash.
2022
CRYPTO
Simplified MITM Modeling for Permutations: New (Quantum) Attacks
📺
Abstract
Meet-in-the-middle (MITM) is a general paradigm where internal states are computed along two independent paths ('forwards' and 'backwards') that are then matched. Over time, MITM attacks improved using more refined techniques and exploiting additional freedoms and structure, which makes it more involved to find and optimize such attacks. This has led to the use of detailed attack models for generic solvers to automatically search for improved attacks, notably a MILP model developed by Bao et al. at EUROCRYPT 2021.
In this paper, we study a simpler MILP modeling combining a greatly reduced attack representation as input to the generic solver, together with a theoretical analysis that, for any solution, proves the existence and complexity of a detailed attack. This modeling allows to find both classical and quantum attacks on a broad class of cryptographic permutations.
First, Present-like constructions, with the permutations of the Spongent hash functions: we improve the MITM step in distinguishers by up to 3 rounds. Second, AES-like designs: despite being much simpler than Bao et al.'s, our model allows to recover the best previous results. The only limitation is that we do not use degrees of freedom from the key schedule. Third, we show that the model can be extended to target more permutations, like Feistel networks. In this context we give new Guess-and-determine attacks on reduced Simpira v2 and Sparkle.
Finally, using our model, we find several new quantum preimage and pseudo-preimage attacks (e.g. Haraka v2, Simpira v2 ... ) targeting the same number of rounds as the classical attacks.
2021
EUROCRYPT
Advanced Lattice Sieving on GPUs, with Tensor Cores
📺
Abstract
In this work, we study GPU implementations of various state-of-the-art sieving algorithms for lattices (Becker-Gama-Joux 2015, Becker-Ducas-Gama-Laarhoven 2016, Herold-Kirshanova 2017) inside the General Sieve Kernel (G6K, Albrecht et al. 2019). In particular, we extensively exploit the recently introduced Tensor Cores -- originally designed for raytracing and machine learning -- and demonstrate their fitness for the cryptanalytic task at hand. We also propose a new dual-hash technique for efficient detection of `lift-worthy' pairs to accelerate a key ingredient of G6K: finding short lifted vectors.
We obtain new computational records, reaching dimension 180 for the SVP Darmstadt Challenge improving upon the previous record for dimension 155.
This computation ran for 51.6 days on a server with 4 NVIDIA Turing GPUs and 1.5TB of RAM.
This corresponds to a gain of about two orders of magnitude over previous records both in terms of wall-clock time and of energy efficiency.
2021
ASIACRYPT
On Time-Lock Cryptographic Assumptions in Abelian Hidden-Order Groups
📺
Abstract
In this paper we study cryptographic finite abelian groups of unknown order and hardness assumptions in these groups. Abelian groups necessitate multiple group generators, which may be chosen at random. We formalize this setting and hardness assumptions therein. Furthermore, we generalize the algebraic group model and strong algebraic group model from cyclic groups to arbitrary finite abelian groups of unknown order. Building on these formalizations, we present techniques to deal with this new setting, and prove new reductions. These results are relevant for class groups of imaginary quadratic number fields and time-lock cryptography build upon them.
2019
EUROCRYPT
The General Sieve Kernel and New Records in Lattice Reduction
📺
Abstract
We propose the General Sieve Kernel (G6K, pronounced /
e.si.ka/), an abstract stateful machine supporting a wide variety of lattice reduction strategies based on sieving algorithms. Using the basic instruction set of this abstract stateful machine, we first give concise formulations of previous sieving strategies from the literature and then propose new ones. We then also give a light variant of BKZ exploiting the features of our abstract stateful machine. This encapsulates several recent suggestions (Ducas at Eurocrypt 2018; Laarhoven and Mariano at PQCrypto 2018) to move beyond treating sieving as a blackbox SVP oracle and to utilise strong lattice reduction as preprocessing for sieving. Furthermore, we propose new tricks to minimise the sieving computation required for a given reduction quality with mechanisms such as recycling vectors between sieves, on-the-fly lifting and flexible insertions akin to Deep LLL and recent variants of Random Sampling Reduction.Moreover, we provide a highly optimised, multi-threaded and tweakable implementation of this machine which we make open-source. We then illustrate the performance of this implementation of our sieving strategies by applying G6K to various lattice challenges. In particular, our approach allows us to solve previously unsolved instances of the Darmstadt SVP (151, 153, 155) and LWE (e.g. (75, 0.005)) challenges. Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record. For exact-SVP, we observe a performance crossover between G6K and FPLLL’s state of the art implementation of enumeration at dimension 70.
2017
TOSC
Refined Probability of Differential Characteristics Including Dependency Between Multiple Rounds
Abstract
The current paper studies the probability of differential characteristics for an unkeyed (or with a fixed key) construction. Most notably, it focuses on the gap between two probabilities of differential characteristics: probability with independent S-box assumption, pind, and exact probability, pexact. It turns out that pexact is larger than pind in Feistel network with some S-box based inner function. The mechanism of this gap is then theoretically analyzed. The gap is derived from interaction of S-boxes in three rounds, and the gap depends on the size and choice of the S-box. In particular the gap can never be zero when the S-box is bigger than six bits. To demonstrate the power of this improvement, a related-key differential characteristic is proposed against a lightweight block cipher RoadRunneR. For the 128-bit key version, pind of 2−48 is improved to pexact of 2−43. For the 80-bit key version, pind of 2−68 is improved to pexact of 2−62. The analysis is further extended to SPN with an almost-MDS binary matrix in the core primitive of the authenticated encryption scheme Minalpher: pind of 2−128 is improved to pexact of 2−96, which allows to extend the attack by two rounds.
2007
EUROCRYPT
Program Committees
- Crypto 2024 (Artifacts chair)
- Crypto 2022
- Crypto 2020
- FSE 2020
- Eurocrypt 2019
- FSE 2019
- Asiacrypt 2018
- FSE 2018
- FSE 2017
- FSE 2016
- Asiacrypt 2014
- Crypto 2014
Coauthors
- Ange Albertini (1)
- Martin R. Albrecht (1)
- Jacob Appelbaum (1)
- Elie Bursztein (1)
- Anne Canteaut (1)
- Léo Ducas (2)
- Max Fillinger (1)
- Gottfried Herold (1)
- Pierre Karpman (3)
- Elena Kirshanova (1)
- Eran Lambooij (1)
- Arjen K. Lenstra (2)
- Yarik Markov (1)
- David Molnar (1)
- Samuel Neves (1)
- Dag Arne Osvik (1)
- Thomas Peyrin (2)
- Eamonn W. Postlethwaite (1)
- Shahram Rasoolzadeh (1)
- Yu Sasaki (1)
- André Schrottenloher (3)
- Alexander Sotirov (1)
- Marc Stevens (17)
- Aron van Baarsen (2)
- Wessel P. J. van Woerden (1)
- Benne de Weger (2)