CryptoDB
Megumi Ando
Publications
Year
Venue
Title
2024
TCC
Bruisable Onions: Anonymous Communication in the Asynchronous Model
Abstract
In onion routing, a message travels through the network via a series of intermediaries, wrapped in layers of encryption to make it difficult to trace. Onion routing is an attractive approach to realizing anonymous channels because it is simple and fault tolerant. Onion routing protocols provably achieving anonymity in realistic adversary models are known for the synchronous model of communication so far.
In this paper, we give the first onion routing protocol that achieves anonymity in the asynchronous model of communication. The key tool that our protocol relies on is the novel cryptographic object that we call bruisable onion encryption. The idea of bruisable onion encryption is that even though neither the onion's path nor its message content can be altered in transit, an intermediate router on the onion's path that observes that the onion is delayed can nevertheless slightly damage, or bruise it. An onion that is chronically delayed will have been bruised by many intermediaries on its path and become undeliverable. This prevents timing attacks and, as we show, yields a provably secure onion routing protocol in the asynchronous setting.
2022
TCC
Poly Onions: Achieving Anonymity in the Presence of Churn
Abstract
Onion routing is a popular approach towards anonymous communication. Practical implementations are widely used (for example, Tor has millions of users daily), but are vulnerable to various traffic correlation attacks, and the theoretical foundations, despite recent progress, still lag behind.
In particular, all works that model onion routing protocols and prove their security only address a single run, where each party sends and receives a single message of fixed length, once. Moreover, they all assume a static network setting, where the parties are stable throughout the lifetime of the protocol. In contrast, real networks have a high rate of churn (nodes joining and exiting the network), real users want to send multiple messages, and realistic adversaries may observe multiple runs of the protocol.
We initiate a formal treatment of onion routing in a setting with multiple runs over a dynamic network with churn. We provide definitions of both security and anonymity in this setting, and constructions that satisfy them. In particular, we define a new cryptographic primitive called \emph{Poly Onions} and show that it can be used to realize our definitions.
2021
TCC
Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption
📺
Abstract
Onion routing is a popular, efficient, and scalable method for enabling anonymous communications. To send a message m to Bob via onion routing, Alice picks several intermediaries, wraps m in multiple layers of encryption --- a layer per intermediary --- and sends the resulting “onion” to the first intermediary. Each intermediary “peels off'”a layer of encryption and learns the identity of the next entity on the path and what to send along; finally Bob learns that he is the recipient and recovers the message m.
Despite its wide use in the real world (e.g., Mixminion), the foundations of onion routing have not been thoroughly studied. In particular, although two-way communication is needed in most instances, such as anonymous Web browsing or anonymous access to a resource, until now no definitions or provably secure constructions have been given for two-way onion routing. Moreover, the security definitions that existed even for one-way onion routing were found to have significant flaws.
In this paper, we (1) propose an ideal functionality for a repliable onion encryption scheme; (2) give a game-based definition for repliable onion encryption and show that it is sufficient to realize our ideal functionality; and finally (3), our main result is a construction of repliable onion encryption that satisfies our definitions.
Coauthors
- Megumi Ando (3)
- Miranda Christ (1)
- Anna Lysyanskaya (3)
- Tal Malkin (1)
- Eli Upful (1)