CryptoDB
Miranda Christ
Publications
Year
Venue
Title
2024
CRYPTO
Pseudorandom Error-Correcting Codes
Abstract
We construct pseudorandom error-correcting codes (or simply pseudorandom codes), which are error-correcting codes with the property that any polynomial number of codewords are pseudorandom to any computationally-bounded adversary. Efficient decoding of corrupted codewords is possible with the help of a decoding key.
We build pseudorandom codes that are robust to bit-flip and deletion errors, where pseudorandomness rests on standard cryptographic assumptions. Specifically, pseudorandomness is based on either $2^{O(\sqrt{n})}$-hardness of LPN, or polynomial hardness of LPN and the planted XOR problem at low density.
As our primary application of pseudorandom codes, we present an undetectable watermarking scheme for outputs of language models that is robust to cropping and a constant rate of random substitutions and deletions. The watermark is undetectable in the sense that any number of samples of watermarked text are computationally indistinguishable from text output by the original model. This is the first undetectable watermarking scheme that can tolerate a constant rate of errors.
Our second application is to steganography, where a secret message is hidden in innocent-looking content. We present a constant-rate stateless steganography scheme with robustness to a constant rate of substitutions. Ours is the first stateless steganography scheme with provable steganographic security and any robustness to errors.
2022
TCC
Poly Onions: Achieving Anonymity in the Presence of Churn
Abstract
Onion routing is a popular approach towards anonymous communication. Practical implementations are widely used (for example, Tor has millions of users daily), but are vulnerable to various traffic correlation attacks, and the theoretical foundations, despite recent progress, still lag behind.
In particular, all works that model onion routing protocols and prove their security only address a single run, where each party sends and receives a single message of fixed length, once. Moreover, they all assume a static network setting, where the parties are stable throughout the lifetime of the protocol. In contrast, real networks have a high rate of churn (nodes joining and exiting the network), real users want to send multiple messages, and realistic adversaries may observe multiple runs of the protocol.
We initiate a formal treatment of onion routing in a setting with multiple runs over a dynamic network with churn. We provide definitions of both security and anonymity in this setting, and constructions that satisfy them. In particular, we define a new cryptographic primitive called \emph{Poly Onions} and show that it can be used to realize our definitions.
Coauthors
- Megumi Ando (1)
- Miranda Christ (2)
- Sam Gunn (1)
- Anna Lysyanskaya (1)
- Tal Malkin (1)