CryptoDB
Sofía Celi
Publications
Year
Venue
Title
2024
TCHES
Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4
Abstract
MAYO is a popular high-calorie condiment as well as an auspicious candidate in the ongoing NIST competition for additional post-quantum signature schemes achieving competitive signature and public key sizes. In this work, we present high-speed implementations of MAYO using the AVX2 and Armv7E-M instruction sets targeting recent x86 platforms and the Arm Cortex-M4. Moreover, the main contribution of our work is showing that MAYO can be even faster when switching from a bitsliced representation of keys to a nibble-sliced representation. While the bitsliced representation was primarily motivated by faster arithmetic on microcontrollers, we show that it is not necessary for achieving high performance on Cortex-M4. On Cortex-M4, we instead propose to implement the large matrix multiplications of MAYO using the Method of the Four Russians (M4R), which allows us to achieve better performance than when using the bitsliced approach. This results in up to 21% faster signing. For AVX2, the change in representation allows us to implement the arithmetic much faster using shuffle instructions. Signing takes up to 3.2x fewer cycles and key generation and verification enjoy similar speedups. This shows that MAYO is competitive with lattice-based signature schemes on x86 CPUs, and a factor of 2-6 slower than lattice-based signature schemes on Cortex-M4 (which can still be considered competitive).
2022
EUROCRYPT
A Fast and Simple Partially Oblivious PRF, with Applications
📺
Abstract
We build the first construction of a partially oblivious pseudorandom function (POPRF) that does not rely on bilinear pairings. Our construction can be viewed as combining elements of the 2HashDH OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy PRF. We analyze our POPRF’s security in the random oracle model via reduction to a new one-more gap strong Diffie-Hellman inversion assumption. The most significant technical challenge is establishing confidence in the new assumption, which requires new proof techniques that enable us to show that its hardness is implied by the q-DL assumption in the algebraic group model.
Our new construction is as fast as the current, standards-track OPRF 2HashDH protocol, yet provides a new degree of flexibility useful in a variety of applications. We show how POPRFs can be used to prevent token hoarding attacks against Privacy Pass, reduce key management complexity in the OPAQUE password authenticated key exchange protocol, and ensure stronger security for password breach alerting services.
Program Committees
- Crypto 2024 (Artifacts committee)
Coauthors
- Ward Beullens (1)
- Fabio Campos (1)
- Sofía Celi (2)
- Basil Hess (1)
- Matthias J. Kannwischer (1)
- Thomas Ristenpart (1)
- Nicholas T. Sullivan (1)
- Stefano Tessaro (1)
- Nirvan Tyagi (1)
- Christopher A. Wood (1)