CryptoDB
Jack O'Connor
Publications
Year
Venue
Title
2023
EUROCRYPT
Proof-Carrying Data From Arithmetized Random Oracles
Abstract
Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually distrustful parties to perform distributed computation in an efficiently verifiable manner. Known constructions of PCD are obtained by recursively-composing SNARKs or related primitives. SNARKs with desirable properties such as transparent setup are constructed in the random oracle model. However, using such SNARKs to construct PCD requires heuristically instantiating the oracle and using it in a non-black-box way. Chen, Chiesa and Spooner [Eurocrypt'22] constructed SNARKs in the low-degree random oracle model, circumventing this issue, but instantiating their model in the real world appears difficult.
In this paper, we introduce a new model: the arithmetized random oracle model (AROM). We provide a plausible standard-model (software-only) instantiation of the AROM, and we construct PCD in the AROM, given only a standard-model collision-resistant hash function. Furthermore, our PCD construction is for arbitrary-depth compliance predicates. We obtain our PCD construction by showing how to construct SNARKs in the AROM for computations that query the oracle, given an accumulation scheme for oracle queries in the AROM. We then construct such an accumulation scheme for the AROM.
To prove the security of cryptographic constructs in the AROM, we give a non-trivial and efficient "lazy sampling" algorithm (a "stateful emulator") for the ARO up to some error. We obtain this construction by developing a toolkit for analyzing cryptographic constructions in the AROM, which uses algebraic query complexity techniques and the combinatorial nullstellensatz.
2021
RWC
E2E Encryption and Identity Properties for Zoom Meetings
Abstract
Zoom’s platform provides video conferencing services for hundreds of millions of daily meeting participants. They use Zoom to conduct business, learn among classmates scattered by recent events, connect with friends and family, collaborate with colleagues, and in some cases, discuss critical matters of state. Zoom is working hard to improve meeting security for its users. In May 2020, Zoom published an incrementally deployable proposal\footnote{\url{https://github.com/zoom/zoom-e2e-whitepaper}}, describing not only a design for its improved end-to-end encryption (E2EE), but also a plan to build an auditable and persistent notion of identity for all Zoom users, which will provide additional security even against active attacks from a compromised Zoom server.
In this talk, I will first describe our improved end-to-end design, report on our progress deploying it, and comment on some lessons we learned along the way. Then, I will look to the future and present our vision for user identity protocols. I will argue why it matters, discuss the issues which make this problem hard, and how we plan to address them.
Coauthors
- Josh Bloom (1)
- Simon Booth (1)
- Megan Chen (1)
- Alessandro Chiesa (1)
- Oded Gal (1)
- Matthew Green (1)
- Tom Gur (1)
- Lea Kissner (1)
- Maxwell Krohn (1)
- Julia Len (1)
- Karan Lyons (1)
- Antonio Marcedone (1)
- Mike Maxim (1)
- Merry Ember Mou (1)
- Jack O'Connor (2)
- Nicholas Spooner (1)
- Alex Stamos (1)
- Miles Steele (1)