International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Aggelos Kiayias

Publications

Year
Venue
Title
2024
PKC
2024
PKC
One-shot Signatures: Applications and Design Directions (invited talk)
Aggelos Kiayias
More than 50 years ago, Stephen Wiesner envisioned how the uncertainty principle could be harnessed to create oblivious transfer quantum channels and unforgeable quantum money. This seminal work lead to a number of developments widening the impact of quantum enhanced protocols in cryptography. Recently, following the blossoming of this research domain, one-shot signatures were introduced by Amos, Georgiou, Kiayias, and Zhandry (STOC 2020). This cryptographic primitive enables digital signatures with classical public-key verification and a quantum signing algorithm that self-destructs after being used once. This impossible property to achieve in the classical setting (barring hardware assumptions) has a number of far reaching applications that include key-evolving signatures without erasures, provably secret signing keys, secure proof-of-stake blockchains without erasing keys or economic penalties as well as non-interactive publicly verifiable proofs of quantumness and min-entropy. Known design approaches for one-shot signatures rely on the one side of so called win-win results regarding the ``collapsing'' features of hash functions and commitments in the quantum setting. Specifically, while being collapsing is a desirable property of such primitives from a post-quantum security perspective, a failure to collapse combined with retaining a degree of security, may enable useful quantum enhanced primitives including one-shot signatures. In this talk we overview applications and the currently known design approaches for one-shot signatures as well as point to directions for future research.
2024
EUROCRYPT
Proof-of-Work-based Consensus in Expected-Constant Time
Juan Garay Aggelos Kiayias Yu Shen
In the traditional consensus problem (aka Byzantine agreement), parties are required to agree on a common value despite the malicious behavior of some of them, subject to the condition that if all the honest parties start the execution with the same value, then that should be the outcome. This problem has been extensively studied by both the distributed computing and cryptographic protocols communities. With the advent of blockchains, whose main application---a distributed ledger---essentially requires that miners agree on their views, new techniques have been proposed to solve the problem, and in particular in so-called ``permissionless'' environments, where parties are not authenticated or have access to point-to-point channels and, further, may come and go as they please. So far, the fastest way to achieve consensus in the proof-of-work (PoW)-based setting of Bitcoin, takes O(polylog \kappa) number of rounds, where \kappa is the security parameter. We present the first protocol in this setting that requires expected-constant number of rounds. Furthermore, we show how to apply securely sequential composition in order to yield a fast distributed ledger protocol that settles all transactions in expected-constant time. Our result is based on a novel instantiation of ``m-for-1 PoWs'' on parallel chains that facilitates our basic building block, Chain-King Consensus. The techniques we use, via parallel chains, to port classical protocol design elements (such as Phase-King Consensus, super-phase sequential composition and others) into the permissionless setting may be of independent interest.
2024
EUROCRYPT
Ordering Transactions with Bounded Unfairness: Definitions, Complexity and Constructions
Aggelos Kiayias Nikos Leonardos Yu Shen
An important consideration in the context of distributed ledger protocols is fairness in terms of transaction ordering. Recent work [Crypto 2020] revealed a connection of (receiver) order fairness to social choice theory and related impossibility results arising from the Condorcet paradox. As a result of the impossibility, various relaxations of order fairness were proposed in prior works. Given that distributed ledger protocols, especially those processing smart contracts, must serialize the input transactions, a natural objective is to minimize the distance (in terms of number of transactions) between any pair of unfairly ordered transactions in the output ledger — a concept we call bounded unfairness. In state machine replication (SMR) parlance this asks for minimizing the number of unfair state updates occurring before the processing of any request. This unfairness minimization objective gives rise to a natural class of parametric order fairness definitions that has not been studied before. As we observe, previous realizable relaxations of order fairness do not yield good unfairness bounds. Achieving optimal order fairness in the sense of bounded unfairness turns out to be connected to the graph theoretic properties of the underlying transaction dependency graph and specifically the bandwidth metric of strongly connected components in this graph. This gives rise to a specific instance of the definition that we call ``directed bandwidth order-fairness'' which we show that it captures the best possible that any ledger protocol can achieve in terms of bounding unfairness. We prove ordering transactions in this fashion is NP-hard and non-approximable for any constant ratio. Towards realizing the property, we put forth a new distributed ledger protocol called Taxis that achieves directed bandwidth order-fairness. We present two variations, one that matches the property perfectly but (necessarily) lacks in performance and liveness, and another that achieves liveness and better complexity while offering a slightly relaxed version of the property. Finally, we comment on applications of our work to social choice theory, a direction which we believe to be of independent interest.
2024
EUROCRYPT
Approximate Lower Bound Arguments
Suppose a prover, in possession of a large body of valuable evidence, wants to quickly convince a verifier by presenting only a small portion of the evidence. We define an Approximate Lower Bound Argument, or ALBA, which allows the prover to do just that: to succinctly prove knowledge of a large number of elements satisfying a predicate (or, more generally, elements of a sufficient total weight when a predicate is generalized to a weight function). The argument is approximate because there is a small gap between what the prover actually knows and what the verifier is convinced the prover knows. This gap enables very efficient schemes. We present noninteractive constructions of ALBA in the random oracle and Uniform Random String models and show that our proof sizes are nearly optimal. We also show how our constructions can be made particularly communication-efficient when the evidence is distributed among multiple provers working together, which is of practical importance when ALBA is applied to a decentralized setting. We demonstrate two very different applications of ALBAs: for large-scale decentralized signatures and for achieving universal composability in general-purpose succinct proof systems (SNARKs).
2024
CRYPTO
Towards Permissionless Consensus in the Standard Model via Fine-Grained Complexity
We investigate the feasibility of {\em permissionless} consensus (aka Byzantine agreement) under standard assumptions. A number of protocols have been proposed to achieve permissionless consensus, most notably based on the Bitcoin protocol; however, to date no protocol is known that can be provably instantiated outside of the random oracle model. In this work, we take the first steps towards achieving permissionless consensus in the standard model. In particular, we demonstrate that worst-case conjectures in fine-grained complexity, in particular the orthogonal vectors conjecture (implied by the Strong Exponential Time Hypothesis), imply permissionless consensus in the random beacon model---a setting where a fresh random value is delivered to all parties at regular intervals. This gives a remarkable win-win result: \emph{either permissionless consensus exists relative to a random beacon, or there are non-trivial worst-case algorithmic speed-ups for a host of natural algorithmic problems} (including $\mathsf{SAT}$). Our protocol achieves resilience against adversaries that control an inverse-polynomial fraction of the honest computational power, i.e.,~adversarial power $A=T^{1-\epsilon}$ for some constant $\epsilon>0$, where $T$ denotes the honest computational power. This relatively low threshold is a byproduct of the slack in the fine-grained complexity conjectures. One technical highlight is the construction of a \emph{Seeded Proof of Work}: a Proof of Work where many (correlated) challenges can be derived from a single short \emph{public} seed, and yet still no non-trivial amortization is possible.
2024
CRYPTO
Universal Composable Transaction Serialization with Order Fairness
Michele Ciampi Aggelos Kiayias Yu Shen
Order fairness in the context of distributed ledgers has received recently significant attention due to a range of attacks that exploit the reordering and adaptive injection of transactions (violating what is known as ``input causality''). To address such concerns an array of definitions for order fairness has been put forth together with impossibility and feasibility results highlighting the difficulty and multifaceted nature of fairness in transaction serialization. Motivated by this we present a comprehensive modeling of order fairness capitalizing on the universal composition (UC) setting. Our results capture the different flavors of sender order fairness and input causality (which is arguably one of the most critical aspects of ledger transaction processing with respect to serialization attacks) and we parametrically illustrate what are the limits of feasibility for realistic constructions via an impossibility result. Our positive result, a novel distributed ledger protocol utilizing trusted enclaves, complements tightly our impossibility result, hence providing an \emph{optimal} sender order fairness ledger construction that is also eminently practical.
2024
JOFC
(Continuous) Non-malleable Codes for Partial Functions with Manipulation Detection and Light Updates
<jats:title>Abstract</jats:title><jats:p>Non-malleable codes were introduced by Dziembowski et al. (in: Yao (ed) ICS2010, Tsinghua University Press, 2010), and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. We present two constructions: the first one is in the CRS model and allows the adversary to selectively choose the subset of codeword bits, while the latter is in the standard model and adaptively secure. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to <jats:inline-formula><jats:alternatives><jats:tex-math>$$\bot $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>⊥</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>. We show that our primitive implies All-Or-Nothing Transforms (AONTs), and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. Furthermore, we construct a notion of continuous non-malleable codes (CNMC), namely CNMC with light updates, that avoids the full re-encoding process and only uses shuffling and refreshing operations. Finally, we present a number of additional applications of our primitive in tamper resilience.</jats:p>
2023
TCC
Agile Cryptography: A Universally Composable Approach
Being capable of updating cryptographic algorithms is an inevitable and essential practice in cryptographic engineering. This cryptographic agility, as it has been called, is a fundamental desideratum for long term cryptographic system security that still poses significant challenges from a modeling perspective. For instance, current formulations of agility fail to express the fundamental security that is expected to stem from timely implementation updates, namely the fact that the system retains some of its security properties provided that the update is performed prior to the deprecated implementation becoming exploited. In this work we put forth a novel framework for expressing updateability in the context of cryptographic primitives within the universal composition model. Our updatable ideal functionality framework provides a general template for expressing the security we expect from cryptographic agility capturing in a fine grained manner all the properties that can be retained across implementation updates. We exemplify our framework over two basic cryptographic primitives, digital signatures and non-interactive zero-knowledge (NIZK), where we demonstrate how to achieve updateability with consistency and backwards-compatibility across updates in a composable manner. We also illustrate how our notion is a continuation of a much broader scope of the concept of agility introduced by Acar, Belenkiy, Bellare, and Cash in Eurocrypt 2010 in the context of symmetric cryptographic primitives.
2022
CRYPTO
Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 📺
Minimizing the energy cost and carbon footprint of the Bitcoin blockchain and related protocols is one of the most widely identified open questions in the cryptocurrency space. Substituting the proof-of-work (PoW) primitive in Nakamoto's longest chain protocol with a {\em proof of useful work} (PoUW) has been long theorized as an ideal solution in many respects but, to this day, the concept still lacks a convincingly secure realization. In this work we put forth {\em Ofelimos}, a novel PoUW-based blockchain protocol whose consensus mechanism simultaneously realizes a decentralized optimization-problem solver. Our protocol is built around a novel local search algorithm, which we call Doubly Parallel Local Search (DPLS), that is especially crafted to suit implementation as the PoUW component of our blockchain protocol. We provide a thorough security analysis of our protocol and additionally present metrics that reflect the usefulness of the system. As an illustrative example we show how DPLS can implement a variant of WalkSAT and experimentally demonstrate its competitiveness with respect to a vanilla WalkSAT implementation. In this way, our work paves the way for safely using blockchain systems as generic optimization engines for a variety of hard optimization problems for which a publicly verifiable solution is desired.
2022
TCC
Permissionless Clock Synchronization with Public Setup
Juan Garay Aggelos Kiayias Yu Shen
The permissionless clock synchronization problem asks how it is possible for a population of parties to maintain a system-wide synchronized clock, while their participation rate fluctuates —possibly very widely— over time. The underlying assumption is that parties experience the passage of time with roughly the same speed, but however they may disengage and engage with the protocol following arbitrary (and even chosen adversarially) participation patterns. This (classical) problem has received renewed attention due to the advent of blockchain protocols, and recently it has been solved in the setting of proof of stake, i.e., when parties are assumed to have access to a trusted PKI setup [Badertscher et al., Eurocrypt ’21]. In this work, we present the first proof-of-work (PoW)-based permissionless clock synchro- nization protocol. Our construction relies on an honest majority of computational power that, for the first time, is described in a fine-grain timing model that does not utilize a global clock that exports the current time to all parties. As a secondary result of independent interest, our protocol gives rise to the first PoW-based ledger consensus protocol that does not rely on an external clock for the time-stamping of transactions and adjustment of the PoW difficulty.
2021
EUROCRYPT
Dynamic Ad Hoc Clock Synchronization 📺
Clock synchronization allows parties to establish a common notion of global time by leveraging a weaker synchrony assumption, i.e., local clocks with approximately the same speed. Despite intensive investigation of the problem in the fault-tolerant distributed computing literature, existing solutions do not apply to settings where participation is unknown, e.g., the ad hoc model of Beimel et al. [EUROCRYPT 17], or is dynamically shifting over time, e.g., the fluctuating/sleepy/dynamic-availability models of Garay et al. [CRYPTO 17], Pass and Shi [ASIACRYPT 17] and Badertscher et al. CCS 18]. We show how to apply and extend ideas from the blockchain literature to devise synchronizers that work in such dynamic ad hoc settings and tolerate corrupted minorities under the standard assumption that local clocks advance at approximately the same speed. We discuss both the setting of honest-majority hashing power and that of a PKI with honest majority. Our main result is a synchronizer that is directly integrated with a new proof-of-stake (PoS) blockchain protocol, Ouroboros Chronos, which we construct and prove secure; to our knowledge, this is the first PoS blockchain protocol to rely only on local clocks, while tolerating worst-case corruption and dynamically fluctuating participation. We believe that this result might be of independent interest.
2021
CRYPTO
Composition with Knowledge Assumptions 📺
Zero-knowledge succinct non-interactive arguments (zk-SNARKs) rely on knowledge assumptions for their security. Meanwhile, as the complexity and scale of cryptographic systems continues to grow, the composition of secure protocols is of vital importance. The current gold standards of composable security, the Universal Composability and Constructive Cryptography frameworks cannot capture knowledge assumptions, as their core proofs of composition prohibit white-box extraction. In this paper, we present a formal model allowing the composition of knowledge assumptions. Despite showing impossibility for the general case, we demonstrate the model’s usefulness when limiting knowledge assumptions to few instances of protocols at a time. We finish by providing the first instance of a simultaneously succinct and composable zk-SNARK, by using existing results within our framework.
2020
EUROCRYPT
Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 📺
Traditional bounds on synchronous Byzantine agreement (BA) and secure multi-party computation (MPC) establish that in absence of a private correlated-randomness setup, such as a PKI, protocols can tolerate up to $t<n/3$ of the parties being malicious. The introduction of ``Nakamoto style'' consensus, based on Proof-of-Work (PoW) blockchains, put forth a somewhat different flavor of BA, showing that even a majority of corrupted parties can be tolerated as long as the majority of the computation resources remain at honest hands. This assumption on honest majority of some resource was also extended to other resources such as stake, space, etc., upon which blockchains achieving Nakamoto-style consensus were built that violated the $t<n/3$ bound in terms of number of party corruptions. The above state of affairs begs the question of whether the seeming mismatch is due to different goals and models, or whether the resource-restricting paradigm can be generically used to circumvent the $n/3$ lower bound. In this work we study this question and formally demonstrate how the above paradigm changes the rules of the game in cryptographic definitions. First, we abstract the core properties that the resource-restricting paradigm offers by means of a functionality {\em wrapper}, in the UC framework, which when applied to a standard point-to-point network restricts the ability (of the adversary) to send new messages. We show that such a wrapped network can be implemented using the resource-restricting paradigm---concretely, using PoWs and honest majority of computing power---and that the traditional $t<n/3$ impossibility results fail when the parties have access to such a network. Our construction is in the {\em fresh} Common Reference String (CRS) model---i.e., it assumes a CRS which becomes available to the parties at the same time as to the adversary. We then present constructions for BA and MPC, which given access to such a network tolerate $t<n/2$ corruptions without assuming a private correlated randomness setup. We also show how to remove the freshness assumption from the CRS by leveraging the power of a random oracle. Our MPC protocol achieves the standard notion of MPC security, where parties might have dedicated roles, as is for example the case in Oblivious Transfer protocols. This is in contrast to existing solutions basing MPC on PoWs, which associate roles to pseudonyms but do not link these pseudonyms with the actual parties.
2020
TCC
Blockchains from Non-Idealized Hash Functions 📺
The formalization of concrete, non-idealized hash function properties sufficient to prove the security of Bitcoin and related protocols has been elusive, as all previous security analyses of blockchain protocols have been performed in the random oracle model. In this paper we identify three such properties, and then construct a blockchain protocol whose security can be reduced to them in the standard model assuming a common reference string (CRS). The three properties are: {\em collision resistance}, {\em computational randomness extraction} and {\em iterated hardness}. While the first two properties have been extensively studied, iterated hardness has been empirically stress-tested since the rise of Bitcoin; in fact, as we demonstrate in this paper, any attack against it (assuming the other two properties hold) results in an attack against Bitcoin. In addition, iterated hardness puts forth a new class of search problems which we term {\em iterated search problems} (ISP). ISPs enable the concise and modular specification of blockchain protocols, and may be of independent interest.
2020
TCC
Ledger Combiners for Fast Settlement 📺
Blockchain protocols based on variations of the longest-chain rule—whether following the proof-of-work paradigm or one of its alternatives—suffer from a fundamental latency barrier. This arises from the need to collect a sufficient number of blocks on top of a transaction-bearing block to guarantee the transaction’s stability while limiting the rate at which blocks can be created in order to prevent security-threatening forks. Our main result is a black-box security-amplifying combiner based on parallel composition of m blockchains that achieves \Theta(m)-fold security amplification for conflict-free transactions or, equivalently, \Theta(m)-fold reduction in latency. Our construction breaks the latency barrier to achieve, for the first time, a ledger based purely on Nakamoto longest-chain consensus guaranteeing worst-case constant-time settlement for conflict-free transactions: settlement can be accelerated to a constant multiple of block propagation time with negligible error. Operationally, our construction shows how to view any family of blockchains as a unified, virtual ledger without requiring any coordination among the chains or any new protocol metadata. Users of the system have the option to inject a transaction into a single constituent blockchain or---if they desire accelerated settlement---all of the constituent blockchains. Our presentation and proofs introduce a new formalism for reasoning about blockchains, the dynamic ledger, and articulate our constructions as transformations of dynamic ledgers that amplify security. We also illustrate the versatility of this formalism by presenting robust-combiner constructions for blockchains that can protect against complete adversarial control of a minority of a family of blockchains.
2020
ASIACRYPT
Crowd Verifiable Zero-Knowledge and End-to-end Verifiable Multiparty Computation 📺
Auditing a secure multiparty computation (MPC) protocol entails the validation of the protocol transcript by a third party that is otherwise untrusted. In this work we introduce the concept of end-to-end verifiable MPC (VMPC), that requires the validation to provide a correctness guarantee even in the setting that all servers, trusted setup primitives and all the client systems utilized by the input-providing users of the MPC protocol are subverted by an adversary. To instantiate VMPC, we introduce a new concept in the setting of zero-knowlegde protocols that we term crowd verifiable zero-knowledge (CVZK). A CVZK protocol enables a prover to convince a set of verifiers about a certain statement, even though each one individually contributes a small amount of entropy for verification and some of them are adversarially controlled. Given CVZK, we present a VMPC protocol that is based on discrete-logarithm related assumptions. At the high level of adversity that VMPC is meant to withstand, it is infeasible to ensure perfect correctness, thus we investigate the classes of functions and verifiability relations that are feasible in our framework, and present a number of possible applications the underlying functions of which can be implemented via VMPC.
2018
EUROCRYPT
2018
CRYPTO
Non-Malleable Codes for Partial Functions with Manipulation Detection 📺
Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs (ICS ’10) and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to $$\bot $$⊥. Finally, our primitive implies All-Or-Nothing Transforms (AONTs) and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. In addition to this, we present a number of additional applications of our primitive in tamper resilience.
2018
PKC
Bootstrapping the Blockchain, with Applications to Consensus and Fast PKI Setup
The Bitcoin backbone protocol (Eurocrypt 2015) extracts basic properties of Bitcoin’s underlying blockchain data structure, such as “common prefix” and “chain quality,” and shows how fundamental applications including consensus and a robust public transaction ledger can be built on top of them. The underlying assumptions are “proofs of work” (POWs), adversarial hashing power strictly less than 1/2 and no adversarial pre-computation—or, alternatively, the existence of an unpredictable “genesis” block.In this paper we first show how to remove the latter assumption, presenting a “bootstrapped” Bitcoin-like blockchain protocol relying on POWs that builds genesis blocks “from scratch” in the presence of adversarial pre-computation. Importantly, the round complexity of the genesis block generation process is independent of the number of participants.Next, we consider applications of our construction, including a PKI generation protocol and a consensus protocol without trusted setup assuming an honest majority (in terms of computational power). Previous results in the same setting (unauthenticated parties, no trusted setup, POWs) required a round complexity linear in the number of participants.
2018
ASIACRYPT
A Universally Composable Framework for the Privacy of Email Ecosystems
Email communication is amongst the most prominent online activities, and as such, can put sensitive information at risk. It is thus of high importance that internet email applications are designed in a privacy-aware manner and analyzed under a rigorous threat model. The Snowden revelations (2013) suggest that such a model should feature a global adversary, in light of the observational tools available. Furthermore, the fact that protecting metadata can be of equal importance as protecting the communication context implies that end-to-end encryption may be necessary, but it is not sufficient.With this in mind, we utilize the Universal Composability framework [Canetti, 2001] to introduce an expressive cryptographic model for email “ecosystems” that can formally and precisely capture various well-known privacy notions (unobservability, anonymity, unlinkability, etc.), by parameterizing the amount of leakage an ideal-world adversary (simulator) obtains from the email functionality.Equipped with our framework, we present and analyze the security of two email constructions that follow different directions in terms of the efficiency vs. privacy tradeoff. The first one achieves optimal security (only the online/offline mode of the users is leaked), but it is mainly of theoretical interest; the second one is based on parallel mixing [Golle and Juels, 2004] and is more practical, while it achieves anonymity with respect to users that have similar amount of sending and receiving activity.
2017
PKC
2017
CRYPTO
2017
CRYPTO
2016
EUROCRYPT
2016
ASIACRYPT
2015
TCC
2015
EUROCRYPT
2015
EUROCRYPT
2014
JOFC
2014
ASIACRYPT
2013
ASIACRYPT
2011
ASIACRYPT
2010
PKC
2009
PKC
2009
EUROCRYPT
2008
TCC
2007
ASIACRYPT
2007
CRYPTO
2006
PKC
2005
EUROCRYPT
2004
ASIACRYPT
2004
EUROCRYPT
2004
EUROCRYPT
2003
EUROCRYPT
2002
EUROCRYPT
2002
PKC
2001
CRYPTO

Program Committees

Crypto 2022
PKC 2020 (Program chair)
TCC 2018
Eurocrypt 2017
Crypto 2016
Asiacrypt 2015
PKC 2014
Crypto 2014
Eurocrypt 2012
Crypto 2012
Asiacrypt 2011
Crypto 2011
Eurocrypt 2010
PKC 2009
Eurocrypt 2005