International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Christof Beierle

Publications

Year
Venue
Title
2023
CRYPTO
On Perfect Linear Approximations and Differentials over Two-Round SPNs
Recent constructions of (tweakable) block ciphers with an embedded cryptographic backdoor relied on the existence of probability-one differentials or perfect (non-)linear approximations over a reduced-round version of the primitive. In this work, we study how the existence of probability-one differentials or perfect linear approximations over two rounds of a substitution permutation network can be avoided by design. More precisely, we develop criteria on the s-box and the linear layer that guarantee the absence of probability-one differentials for all keys. We further present an algorithm that allows to efficiently exclude the existence of keys for which there exists a perfect linear approximation.
2022
JOFC
Improved Differential-Linear Attacks with Applications to ARX Ciphers
We present several improvements to the framework of differential-linear attacks with a special focus on ARX ciphers. As a demonstration of their impact, we apply them to Chaskey and ChaCha and we are able to significantly improve upon the best attacks published so far.
2022
CRYPTO
Constructing and Deconstructing Intentional Weaknesses in Symmetric Ciphers 📺
Deliberately weakened ciphers are of great interest in political discussion on law enforcement, as in the constantly recurring crypto wars, and have been put in the spotlight of academics by recent progress. A paper at Eurocrypt 2021 showed a strong indication that the security of the widely-deployed stream cipher GEA-1 was deliberately and secretly weakened to 40 bits in order to fulfill European export restrictions that have been in place in the late 1990s. However, no explanation of how this could have been constructed was given. On the other hand, we have seen the MALICIOUS design framework, published at CRYPTO 2020, that allows to construct tweakable block ciphers with a backdoor, where the difficulty of recovering the backdoor relies on well-understood cryptographic assumptions. The constructed tweakable block cipher however is rather unusual and very different from, say, general-purpose ciphers like the AES. In this paper, we pick up both topics. For GEA-1 we thoroughly explain how the weakness was constructed, solving the main open question of the work mentioned above. By generalizing MALICIOUS we - for the first time - construct backdoored tweakable block ciphers that follow modern design principles for general-purpose block ciphers, i.e., more natural-looking deliberately weakened tweakable block ciphers.
2022
TOSC
Decomposing Linear Layers
There are many recent results on reverse-engineering (potentially hidden) structure in cryptographic S-boxes. The problem of recovering structure in the other main building block of symmetric cryptographic primitives, namely, the linear layer, has not been paid that much attention so far. To fill this gap, in this work, we develop a systematic approach to decomposing structure in the linear layer of a substitutionpermutation network (SPN), covering the case in which the specification of the linear layer is obfuscated by applying secret linear transformations to the S-boxes. We first present algorithms to decide whether an ms x ms matrix with entries in a prime field Fp can be represented as an m x m matrix over the extension field Fps . We then study the case of recovering structure in MDS matrices by investigating whether a given MDS matrix follows a Cauchy construction. As an application, for the first time, we show that the 8 x 8 MDS matrix over F28 used in the hash function Streebog is a Cauchy matrix.
2021
EUROCRYPT
2020
CRYPTO
Improved Differential-Linear Attacks with Applications to ARX Ciphers
Christof Beierle Gregor Leander Yosuke Todo
We present several improvements to the framework of differential-linear attacks with a special focus on ARX ciphers. As a demonstration of their impact, we apply them to Chaskey and ChaCha and we are able to significantly improve upon the best attacks published so far.
2020
TOSC
SKINNY-AEAD and SKINNY-Hash 📺
We present the family of authenticated encryption schemes SKINNY-AEAD and the family of hashing schemes SKINNY-Hash. All of the schemes employ a member of the SKINNY family of tweakable block ciphers, which was presented at CRYPTO 2016, as the underlying primitive. In particular, for authenticated encryption, we show how to instantiate members of SKINNY in the Deoxys-I-like ΘCB3 framework to fulfill the submission requirements of the NIST lightweight cryptography standardization process. For hashing, we use SKINNY to build a function with larger internal state and employ it in a sponge construction. To highlight the extensive amount of third-party analysis that SKINNY obtained since its publication, we briefly survey the existing cryptanalysis results for SKINNY-128-256 and SKINNY-128-384 as of February 2020. In the last part of the paper, we provide a variety of ASIC implementations of our schemes and propose new simple SKINNY-AEAD and SKINNY-Hash variants with a reduced number of rounds while maintaining a very comfortable security margin. https://csrc.nist.gov/Projects/Lightweight-Cryptography
2020
TOSC
Lightweight AEAD and Hashing using the Sparkle Permutation Family 📺
We introduce the Sparkle family of permutations operating on 256, 384 and 512 bits. These are combined with the Beetle mode to construct a family of authenticated ciphers, Schwaemm, with security levels ranging from 120 to 250 bits. We also use them to build new sponge-based hash functions, Esch256 and Esch384. Our permutations are among those with the lowest footprint in software, without sacrificing throughput. These properties are allowed by our use of an ARX component (the Alzette S-box) as well as a carefully chosen number of rounds. The corresponding analysis is enabled by the long trail strategy which gives us the tools we need to efficiently bound the probability of all the differential and linear trails for an arbitrary number of rounds. We also present a new application of this approach where the only trails considered are those mapping the rate to the outer part of the internal state, such trails being the only relevant trails for instance in a differential collision attack. To further decrease the number of rounds without compromising security, we modify the message injection in the classical sponge construction to break the alignment between the rate and our S-box layer.
2020
CRYPTO
Alzette: a 64-bit ARX-box (feat. CRAX and TRAX) 📺
S-boxes are the only source of non-linearity in many symmetric cryptographic primitives. While they are often defined as being functions operating on a small space, some recent designs propose the use of much larger ones (e.g., 32 bits). In this context, an S-box is then defined as a subfunction whose cryptographic properties can be estimated precisely. In this paper, we present a 64-bit ARX-based S-box called Alzette which can be evaluated in constant time using only 12 instructions on modern CPUs. Its parallel application can also leverage vector (SIMD) instructions. One iteration of Alzette has differential and linear properties comparable to those of the AES S-box, while two iterations are at least as secure as the AES super S-box. Since the state size is much larger than the typical 4 or 8 bits, the study of the relevant cryptographic properties of Alzette is not trivial. We further discuss how such wide S-boxes could be used to construct round functions of 64-, 128- and 256-bit (tweakable) block ciphers with good cryptographic properties that are guaranteed even in the related-tweak setting. We use these structures to design a very lightweight 64-bit block cipher (CRAX) which outerperforms SPECK-64/128 for short messages on micro-controllers, and a 256-bit tweakable block cipher (TRAX) which can be used to obtain strong security guarantees against powerful adversaries (nonce misuse, quantum attacks).
2019
TOSC
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks 📺
Traditionally, countermeasures against physical attacks are integrated into the implementation of cryptographic primitives after the algorithms have been designed for achieving a certain level of cryptanalytic security. This picture has been changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection against Side-Channel Analysis (SCA) attacks has been considered in their design. In this work we present the tweakable block cipher CRAFT: the efficient protection of its implementations against Differential Fault Analysis (DFA) attacks has been one of the main design criteria, while we provide strong bounds for its security in the related-tweak model. Considering the area footprint of round-based hardware implementations, CRAFT outperforms the other lightweight ciphers with the same state and key size. This holds not only for unprotected implementations but also when fault-detection facilities, side-channel protection, and their combination are integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT has the additional property that the circuit realizing the encryption can support the decryption functionality as well with very little area overhead.
2018
TOSC
ShiftRows Alternatives for AES-like Ciphers and Optimal Cell Permutations for Midori and Skinny 📺
We study possible alternatives for ShiftRows to be used as cell permutations in AES-like ciphers. As observed during the design process of the block cipher Midori, when using a matrix with a non-optimal branch number for the MixColumns operation, the choice of the cell permutation, i.e., an alternative for ShiftRows, can actually improve the security of the primitive. In contrast, when using an MDS matrix it is known that one cannot increase the minimum number of active S-boxes by deviating from the ShiftRows-type permutation. However, finding the optimal choice for the cell permutation for a given, non-optimal, MixColumns operation is a highly non-trivial problem. In this work, we propose techniques to speed up the search for the optimal cell permutations significantly. As case studies, we apply those techniques to Midori and Skinny and provide possible alternatives for their cell permutations. We finally state an easy-to-verify sufficient condition on a cell permutation, to be used as an alternative in Midori, that attains a high number of active S-boxes and thus provides good resistance against differential and linear attacks.
2018
TOSC
Nonlinear Approximations in Cryptanalysis Revisited 📺
Christof Beierle Anne Canteaut Gregor Leander
This work studies deterministic and non-deterministic nonlinear approximations for cryptanalysis of block ciphers and cryptographic permutations and embeds it into the well-understood framework of linear cryptanalysis. For a deterministic (i.e., with correlation ±1) nonlinear approximation we show that in many cases, such a nonlinear approximation implies the existence of a highly-biased linear approximation. For non-deterministic nonlinear approximations, by transforming the cipher under consideration by conjugating each keyed instance with a fixed permutation, we are able to transfer many methods from linear cryptanalysis to the nonlinear case. Using this framework we in particular show that there exist ciphers for which some transformed versions are significantly weaker with regard to linear cryptanalysis than their original counterparts.
2017
CRYPTO
2016
CRYPTO
2016
CRYPTO

Program Committees

Eurocrypt 2024
Eurocrypt 2023
FSE 2022
FSE 2020