International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Gang Tang

Publications

Year
Venue
Title
2024
EUROCRYPT
Algorithms for matrix code and alternating trilinear form equivalences via new isomorphism invariants
We devise algorithms for finding equivalences of trilinear forms over finite fields modulo linear group actions. Our focus is on two problems under this umbrella, Matrix Code Equivalence (MCE) and Alternating Trilinear Form Equivalence (ATFE), since their hardness is the foundation of the NIST round-1 signature candidates MEDS and ALTEQ respectively. We present new algorithms for MCE and ATFE, which are further development of the algorithms for polynomial isomorphism and alternating trilinear form equivalence, in particular by Bouillaguet, Fouque, and Véber (Eurocrypt 2013), and Beullens (Crypto 2023). Key ingredients in these algorithms are new easy-to-compute distinguishing invariants under the respective group actions. For MCE, we associate easy-to-compute isomorphism invariants to corank-1 points of matrix codes, which lead to a birthday-type algorithm. We present empirical justifications that these isomorphism invariants are easy-to-compute and distinguishing, and provide an implementation of this algorithm. This algorithm has some implications to the security of MEDS. The invariant function for ATFE is similar, except it is associated with lower rank points. Modulo certain assumptions on turning the invariant function into canonical forms, our algorithm for ATFE improves on the runtime of the previously best known algorithm of Buellens (Crypto 2023). Finally, we present quantum variants of our classical algorithms with cubic runtime improvements.
2024
CRYPTO
Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme
The Tensor Isomorphism Problem (TIP) has been shown to be equivalent to the matrix code equivalence problem, making it an interesting candidate on which to build post-quantum cryptographic primitives. These hard problems have already been used in protocol development. One of these, MEDS, is currently in Round 1 of NIST's call for additional post-quantum digital signatures. In this work, we consider the TIP for a special class of tensors. The hardness of the decisional version of this problem is the foundation of a commitment scheme proposed by D'Alconzo, Flamini, and Gangemi (Asiacrypt 2023). We present polynomial-time algorithms for the decisional and computational versions of TIP for special orbits, which implies that the commitment scheme is not secure. The key observations of these algorithms are that these special tensors contain some low-rank points, and their stabilizer groups are not trivial. With these new developments in the security of TIP in mind, we give a new commitment scheme based on the general TIP that is non-interactive, post-quantum, and statistically binding, making no new assumptions. Such a commitment scheme does not currently exist in the literature.
2022
EUROCRYPT
Practical Post-Quantum Signature Schemes from Isomorphism Problems of Trilinear Forms 📺
In this paper, we propose a practical signature scheme based on the alternating trilinear form equivalence problem. Our scheme is inspired from the Goldreich-Micali-Wigderson's zero-knowledge protocol for graph isomorphism, and can be served as an alternative candidate for the NIST's post-quantum digital signatures. First, we present theoretical evidences to support its security, especially in the post-quantum cryptography context. The evidences are drawn from several research lines, including hidden subgroup problems, multivariate cryptography, cryptography based on group actions, the quantum random oracle model, and recent advances on isomorphism problems for algebraic structures in algorithms and complexity. Second, we demonstrate its potential for practical uses. Based on algorithm studies, we propose concrete parameter choices, and then implement a prototype. One concrete scheme achieves 128 bit security with public key size ~4100 bytes, signature size ~6800 bytes, and running times (key generation, sign, verify) ~0.8ms on a common laptop computer.