International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Elizabeth Crites

ORCID: 0000-0001-9992-1771

Publications

Year
Venue
Title
2023
CRYPTO
Snowblind: A Threshold Blind Signature in Pairing-Free Groups
Both threshold and blind signatures have, individually, received a considerable amount of attention. However little is known about their combination, i.e., a threshold signature which is also blind, in that no coalition of signers learns anything about the message being signed or the signature being produced. Several applications of blind signatures (e.g., anonymous tokens) would benefit from distributed signing as a means to increase trust in the service and hence reduce the risks of key compromise. This paper builds the first blind threshold signatures in pairing-free groups. Our main contribution is a construction that transforms an underlying blind non-threshold signature scheme with a suitable structure into a threshold scheme, preserving its blindness. The resulting signing protocol proceeds in three rounds, and produces signatures consisting of one group element and two scalars. The underlying non-threshold blind signature schemes are of independent interest, and improve upon the current state of the art (Tessaro and Zhu, EUROCRYPT ’22) with shorter signatures (three elements, instead of four) and simpler proofs of security. All of our schemes are proved secure in the Random Oracle and Algebraic Group Models, assuming the hardness of the discrete logarithm problem.
2023
CRYPTO
Fully Adaptive Schnorr Threshold Signatures
Elizabeth Crites Chelsea Komlo Mary Maller
We prove adaptive security of a simple three-round threshold Schnorr signature scheme, which we call Sparkle. The standard notion of security for threshold signatures considers a static adversary - one who must declare which parties are corrupt at the beginning of the protocol. The stronger adaptive adversary can at any time corrupt parties and learn their state. This notion is natural and practical, yet not proven to be met by most schemes in the literature. In this paper, we demonstrate that Sparkle achieves several levels of security based on different corruption models and assumptions. To begin with, Sparkle is statically secure under minimal assumptions: the discrete logarithm assumption (DL) and the random oracle model (ROM). If an adaptive adversary corrupts fewer than t/2 out of a threshold of t+1 signers, then Sparkle is adaptively secure under a weaker variant of the one-more discrete logarithm assumption (AOMDL) in the ROM. Finally, we prove that Sparkle achieves full adaptive security, with a corruption threshold of t, under AOMDL in the algebraic group model (AGM) with random oracles. Importantly, we show adaptive security without requiring secure erasures. Ours is the first proof achieving full adaptive security without exponential tightness loss for any threshold Schnorr signature scheme; moreover, the reduction is tight.
2023
ASIACRYPT
Threshold Structure-Preserving Signatures
Structure-preserving signatures (SPS) are an important building block for privacy-preserving cryptographic primitives, such as electronic cash, anonymous credentials, and delegatable anonymous credentials. In this work, we introduce the first threshold structure-preserving signature scheme (TSPS). This enables multiple parties to jointly sign a message, resulting in a standard, single-party SPS signature, and can thus be used as a replacement for applications based on SPS. We begin by defining and constructing SPS for indexed messages, which are messages defined relative to a unique index. We prove its security in the random oracle model under a variant of the generalized Pointcheval-Sanders assumption (PS). Moreover, we generalize this scheme to an indexed multi-message SPS for signing vectors of indexed messages, which we prove secure under the same assumption. We then formally define the notion of a TSPS and propose a construction based on our indexed multi-message SPS. Our TSPS construction is fully non-interactive, meaning that signers simply output partial signatures without communicating with the other signers. Additionally, signatures are short: they consist of 2 group elements and require 2 pairing product equations to verify. We prove the security of our TSPS under the security of our indexed multi-message SPS scheme. Finally, we show that our TSPS may be used as a drop-in replacement for UC-secure Threshold-Issuance Anonymous Credential (TIAC) schemes, such as Coconut, without the overhead of the Fischlin transform.
2022
CRYPTO
Better than Advertised Security for Non-Interactive Threshold Signatures 📺
We give a unified syntax, and a hierarchy of definitions of security of increasing strength, for non-interactive threshold signature schemes. These are schemes having a single-round signing protocol, possibly with one prior round of message-independent pre-processing. We fit FROST1 and BLS, which are leading practical schemes, into our hierarchy, in particular showing they meet stronger security definitions than they have been shown to meet so far. We also fit in our hierarchy a more efficient version FROST2 of FROST1 that we give. These definitions and results, for simplicity, all assume trusted key generation. Finally, we prove the security of FROST2 with key generation performed by an efficient distributed key generation protocol.

Program Committees

Crypto 2024
Eurocrypt 2024
Asiacrypt 2024